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FLEXING OF LENGTH BARS 

 

 

 

 

C.1 FLEXING OF A LENGTH BAR DUE TO ITS OWN WEIGHT 

 

Any object lying in a horizontal plane will sag under its own weight unless it is 

infinitely stiff or is supported at many points along its length. For length bars this causes 

two problems. Firstly, if there is any sagging in the vicinity of the ends of the bar, this 

will cause the two end faces to tilt with respect to one another causing a bar with 

otherwise parallel faces to appear out of parallel. Secondly, since the material of the bar 

no longer lies in a straight line between the two end faces, the extra bending may cause 

the length of the bar, measured as the separation between the end faces, to become 

shorter than in its free state. 

 

One solution is to measure the bars vertically, though this is not possible because of 

three reasons. Firstly, the relevant standards state that the bars should be measured in a 

horizontal plane, supported at two points termed the “Airy points” (see later), since this 

is how they will be used in practice. Secondly, a bar standing vertically will contract 

under its own weight, see Appendix D. Thirdly, the variation of refractive index 

between the top and bottom of the bar due to (i) the air pressure gradient due to the 

Earth’s gravitational field and (ii) the variation in the air temperature, contributes a 

significant measurement uncertainty. 

 

Historical solutions such as floating the bar in mercury or supporting it on a system of 8 

rollers or supports [1] have been rejected as hazardous or impractical. They also do not 

conform to the relevant standards. The chosen solution is to support the bar on two 

points whose positions are chosen to make the ends of the bar vertical and parallel with 

each other. These are termed the “Airy points” of the bar and their positions are usually 

engraved on the bar’s surface. The position of these points will now be derived. 
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C.2 DERIVATION OF POSITIONS OF AIRY POINTS 

 

Consider a uniform solid bar of length L , cross-sectional moment of inertia I , and total 

weight W . This bar is supported at 2 points, symmetrically placed about its middle, 

separated by a distance S . Let the reactions at the two supports be R1& R2  as shown in 

figure C.1. 

 

 

Figure C.1 - Bar supported at two points 

 

Resolving vertically, 
R1 + R2 = W , R1 = R2

∴ R1 = R2 =
W

2

 

 

Now, split the bar into three sections (1) to (3) as shown in figure C.1, for the following 

analysis. In each section, 

 

 bending moments∑ = EI
d 2 y

dx
2  (Bernoulli-Euler theory) 

 

Since the bar is uniform, EI  is a constant, and as such will be removed from the 

following equations for simplicity. 

 

In section (1) 

 
d2 y

dx
2 =

Wx2

2L
 (C.1) 

In section (2) 

 
d2 y

dx
2 =

Wx2

2L
− R1 x −

(L − S)

2

 
 

 
 

 (C.2) 

In section (3) 

 
d2 y

dx
2 =

Wx2

2L
− R1 x −

(L − S)

2

 
 

 
 

− R2 x −
(L + S)

2

 
 

 
 

 (C.3) 

 

Integrating equations (C.1) (C.2) and (C.3) gives, respectively, 
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dy

dx
=

Wx3

6L
+ C1 (C.4) 

 
dy

dx
=

Wx3

6L
− R1

x2

2
−

(L − S)x

2

 

  
 

  
+ C2  (C.5) 

 
dy

dx
=

Wx3

6L
− R1

x2

2
−

(L − S)x

2

 

  
 

  
− R2

x2

2
−

(L + S)x

2

 

  
 

  
+ C3  (C.6) 

 

The slope of the bar, 
dy

dx
 must be continuous at the supports therefore equating (C.4) 

and (C.5), and substituting x =
L − S

2
 gives 

 

 
C1 = C2 − R1

(L − S)2

8
−

(L − S)2

4

 

  
 

   

 ie C1 = C2 + R1

(L − S) 2

8

 

  
 

  
 (C.7) 

One constraint is that we require vertical end faces, ie
dy

dx x= 0

= 0  

This implies that C1 = 0  Substituting this result into (C.7) and using the fact that 

R1 =
W

2
 gives 

   C2 = −
W

2

(L − S)2

8

 

  
 

  
 (C.8) 

Now, matching 
dy

dx
 at x = L  gives 

 C3 = −
WL2

6
 (C.9) 

 

With C1,C2,C3  determined, equations (C.3) (C.4) and (C.5) completely describe the 

bending of the bar, once S is known. To find S , 
dy

dx
 is matched at the boundary between 

regions (2) and (3). 

 

In region (2) 

 

dy

dx x=
L +S

2

=
W(L + S)3

48L
_

W

2

(L + S)2

8
−

(L − S)(L + S)

4
+

(L − S)2

8

 

  
 

  
 (C.10) 

 

and in region (3) 
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dy

dx x=
L +S

2

=
W(L + S)3

48L
_

W

2

(L + S)2

8
−

(L − S)(L + S)

4
+

(L + S)2

8
−

(L + S)2

4

 

  
 

  
−

WL2

6

 (C.11) 

 

Equating (10) and (11) gives 

 

−
W(L − S)2

16
= −

W

2
−

(L + S)2

8

 

  
 

  
−

WL2

6
 

which with reduction gives 

S
2

=
L2

3
 

i.e. S =
L

3
 

This is the symmetrical spacing of the Airy points, i.e. approximately 0.577 of the 

length of the bar. This is only valid for a bar supported at two points with no additional 

reference flats or other masses attached to it. Even when a bar is supported at the Airy 

points, its central length will be different to the case where it is unsupported due to the 

extra curvature of the bar. Figure C.2 shows the difference dL in length between a bar 

which is unsupported and one which rests on supports positioned a distance a away 

from the end faces (L - S = 2a). Note that supporting at the Airy positions (a = 0.211) 

causes a change in length of dL = -0.4 nm, which is negligible. The support positions 

corresponding to a = 0.185 for which there is the minimum change in length are termed 

the Bessel points. 

 
Figure C.2 - Effect of support point position, a, on change in length, dL, of bar from unsupported state 

for a 1 m bar. 
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C.3 COMPENSATION FOR MASS OF WRUNG FLAT 

 

When a reference flat is wrung to one end face of a bar, this adds additional bending 

and will cause the bar supported at the Airy points to exhibit a parallelism error. 

Techniques for compensating for the extra mass of the flat include supplying an 

additional lifting force by means of weights or levers which effectively cancels out the 

weight of the flat [2]  or by moving the support points towards the ends of the bar [3]. 

 

The latter solution has been adopted as being easier to implement and is detailed below.  

 

Consider the bar and reference flat (platen) shown in figure C.3. 

 

Figure C.3 - Bar supported at new support points with flat attached to one face 

 

The supports are positioned at x = l − a1 and x = l + a2 , with l being the half-length of 

the bar. As before, applying Bernoulli-Euler bending theory to the three regions gives 

three equations 

 

EI
d 2 y

dx
2

A

=
wx2

2
 for 0 < x ≤ l − a1 (C.13) 

EI
d 2 y

dx
2

B

=
wx2

2
− R1(x − l + a1)  for l − a1 < x ≤ l + a2  (C.14) 

EI
d 2 y

dx
2

C

=
wx2

2
− R1(x − l + a1) − R2 (x − l − a2 )  for l + a2 < x ≤ 2l  (C.15) 

 

Integrating (C.13) (C.14) and (C.15) and determining arbitrary constants by continuity 

at support points, gives 

 

EI
dy

dx A

=
wx 3

6
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EI
dy

dx B

=
wx3

6
−

R1

2
(x − l + a1)

2
 

EI
dy

dx C

=
wx3

6
−

R1

2
(x − l + a1 )

2
−

R2

2
(x − l − a2 )

2
 

 

This means that the angle between the end faces, α , is given simply by  

 
dy

dx C, x=2l

 

Thus 

 

 EIα =
4

3
wl

3
−

1

2
(R1 + R2 )(l

2
+ a1a2 ) −

1

2
(R1a1 − R2 a2 )(2l + a1 − a2 )  (C.16) 

 

Now, resolving vertically, R1 + R2 = W + M  and taking moments about the centre of the 

bar gives R1a1 − R2a2 = −M( l + p) , substituting into (C.16) gives 

 

 2EIα = W
l2

3
− a1a2

 

 
  

 
+ M (l + p + a1 )(l + p − a2 ) − p

2{ } (C.17) 

 

To check the previous derivation for the Airy points, setting M = 0, a1 = a2  does indeed 

give the same solution for the positions of the supports. 

 

To see the effect of supporting the bar and flat at the unmodified Airy points, the excess 

tilt of the ends of the bar can be calculated from  

 

α =
Ml2

3EI
1+

3p

l

 
 

 
  

The flats are 70 mm diameter, 15 mm thick and have a density of 7800 kg m-3. This 

gives values of M = 0.4503 kg, p = 7.5 x 10-3 m, I = 1.1923 x 10-8 m4, and for steel, 

Youngs modulus, E = 203 GPa. For a 1 m bar, l = 1 m , this gives a value for α of 

6.34 x 10-5 radians. Converting this to a change of length across the face of the bar 

gives a value of 1.4 µm, or over 4 fringes. To correct this, the two supports must be 

moved either symmetrically, or by moving just one support. 

Let  
M

W
=

np

l
 

where n is the ratio of the cross-section of the flat to the cross-section of the bar, 

assuming that the bar and flat are made of the same material, as required to minimise 

the phase correction. 
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From (C.17), setting α = 0 , dividing by W and substituting  
M

W
=

np

l
gives 

 

l2

3
− a1a2

 

 
  

 
+

np

l
l + p + a1( ) l + p − a2( )− p

2{ }= 0  

 

There are 4 solutions for the positions of the support points: the first two being non-

symmetrical and the remaining two being symmetrical and identical except for a change 

of sign. The non-symmetrical solutions leave one of the supports at its Airy point, and 

the solution of the above equation gives the position of the other support. For the 

symmetrical solution, both of the supports are moved outwards from their Airy points 

and retain their symmetrical placing about the centre of the bar. 

 

Case (i),  support 2 is unmoved,  substituting a2 =
l

3
 in (C.17) 

 

l2

3
−

a1l

3

 

 
  

 
+

np

l
l + p + a1( ) l + p −

l

3

 
 

 
 

− p
2 

 
 

 
 
 

= 0 

 

Separating terms in a1 

 

l2

3
− a1

l

3
+

np

l
l + p( ) l + p −

l

3

 
 

 
 

− p
2 

 
 

 
 
 

+ a1

np

l
l + p −

l

3

 
 

 
 

= 0 

 

l2

3
+

np

l
l + p( ) l + p −

l

3

 
 

 
 

− p
2 

 
 

 
 
 

= a1

l

3
−

np

l
l + p −

l

3

 
 

 
 

 

 
  

 
 

 

a1 =

l2

3
+

np

l
l + p( ) l + p −

l

3

 
 

 
 

− p 2 
 
 

 
 
 

l

3
−

np

l
l + p −

l

3

 
 

 
 

 

 

Removing a common factor of 
l

3
 gives 

 

a1 =
l

3

l

3
+

3

l

np

l
l + p( ) l + p −

l

3

 
 

 
 

− p2 
 
 

 
 
 

l

3
−

np

l
l + p −

l

3

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

Dividing gives 
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a1 =
l

3
1 +

− 3

l
l + p( )−1

 

  
 

  
−

np

l
l + p −

l

3

 
 

 
 

 

  
 

  
−

p
2

3np

l2

l

3
−

np

l
l + p −

l

3

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

Multiplying top and bottom by 3 , separating factors and rearranging gives 

 

a1 =
l

3
1 +

np

l
l + p −

l

3

 
 

 
 

3 + 3 +
3p

l

 
 

 
 −

3p2

l

l −
np

l
3l + 3p − l( )

 

 
 

 
 

 

 
 

 
 

 

 

Multiplying and collecting terms, dividing by l gives 

 

a1 =
l

3

np

l
2 +

6p

l

 
 

 
 

1 −
np

l
3 +

3p

l
−1

 

 
  

 
 

 

 
 

 
 

 

 
 

 
 

 

 

a1 =
l

3

2np

l
1+

3p

l

 
 

 
 

1 +
np

l
1 − 3 −

3p

l

 

 
  

 
 

 

 
 

 
 

 

 
 

 
 

 

 

Thus with   
)/1(/1

)/31(/2
1)(

lplnp

lplnp
f

χχ
χ

+++

+
+≡  

 

a1 =
l

3
f − 3( ) 

 

For case (ii),  support 1 is unmoved, substituting a1 =
l

3
 in (C.17) gives a similar 

solution to case (i), though because the signs of a1 and a2  are reversed, the sign of the 

radical is also reversed in the solution, i.e. 

 

a1 =
l

3
f 3( ) 

 

For case (iii),  both supports are moved symmetrically, substituting a1 = a2 = a  in 

(C.17) gives 
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l2

3
− a

2
+

np

l
l + p + a( ) l + p − a( )− p

2{ }= 0 

Separating terms in a  

 

l2

3
− a

2
+

np

l
l + p( ) l + p( )− a

2{ }= 0  

 

a =
l

3

1 +
3np

l3
l2 + 2 pl( )

1 +
np

l

 

Dividing 

 

a =
l

3
1 +

3 1 +
2 p

l

 
 

 
 −1

 
  

 
  

np

l

1+
np

l

 

 

a =
l

3
1 +

2np

l
1 +

3p

l

 
 

 
 

1+
np

l

 

 

a =
l

3
f 0( )  

 

Strictly, a = ±
l

3
f 0( )  though these two solutions correspond to the two choices of 

labelling the supports, i.e. they are the same physical solution. 

 

In summary,  setting α to zero in (C.17) allows for three solutions: 

(i) Support 2 remains at the Airy position, and support 1 moves to a new position 

 

a2 =
l

3
, a1 =

l

3
f − 3( ) 

 

(ii) Support 1 remains at the Airy position and support 2 moves to a new position 

 

a1 =
l

3
, a2 =

l

3
f 3( ) 

 

(iii) Both supports move by equal amounts to new symmetrical positions 
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a1 = a2 = a =
l

3
f 0( )  

 

where  
)/1(/1

)/31(/2
1)(

lplnp

lplnp
f

χχ
χ

+++

+
+≡  

 

 

Suitable tolerances on the positioning of the supports may be calculated by 

differentiating (C.17) with respect to a, this will be performed for the symmetrical 

solution (case (iii)). 

 

Substitutinga1 = a2 = a  in (C.17) gives 

 

2EIα = W
l2

3
− a

2 

 
  

 
+ M l + p + a( ) l + p − a( )− p

2{ } 

 

2EIα =
Wl 2

3
− Wa

2
+ M l

2
+ 2lp − a

2( ) 

Differentiating with respect to a gives 

 

2EIδα = −2a W + M( )δa  

 

Hence δa =
EI

a W + M( )
δα  (18) 

 

For a 1 m bar, for a maximum value of δα of 1.126 x 10-6 which corresponds to the 

value of 1 µin (0.025 µm) error chosen by Williams, δa = 2.4 x 10-3, or 2.4 mm. This is 

better than the tolerance for the general case for which Williams calculated a value of 

0.7 mm. Thus the use of symmetrical support positions is preferable, for which 

positioning within 2.4 mm is required. 

 

Thus by accurate positioning of the support positions, the additional bending may be 

altered in such a way that the end faces of the bar remain vertical and parallel. The 

effect of this additional bending on the length of the bar will now be examined. 

 

C.4 EFFECT OF FLEXURE OF BARS ON THEIR LENGTH 

 

The effect on the measured length of the bar is measured on the neutral axis of the bar 

which runs through the centre of the bar. For a section of the bar, length dx, with 
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gradient θ the change in length compared to the free state is given by 
θ 2

2
dx , and 

θ =
dy

dx
. Thus the total change in length along the whole bar is given by 

 

 

1

2

dy

dx

 
 

 
 

2

dx
0

2l

⌠ 

⌡ 
 

 

It is possible to perform this integral, substituting for 
dy

dx
 from equations derived earlier, 

but a simple order of magnitude estimate shows that this is not required as the overall 

change in length is negligible. Since 

 

 

1

2

dy

dx

 
 

 
 

2

dx ≤ l
dy

dx max

 

 
  

 
0

2 l

⌠ 

⌡ 
 

2

 

 

 

a maximum value for the change in length due to bending may be calculated. Figure C.4 

shows the variation in the vertical position of the neutral axis of a 1m bar with a flat 

wrung on, supported at the modified symmetrical Airy points and the slope of the bar. 

The maximum slope is seen to be 8 x 10-6 at approximately 0.7 m from the free end of 

the bar. Thus the maximum change in length of the bar is 6.4 x 10-11 m (0.002 fringe), 

i.e. negligible. 
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Figure C.4 - Variation in vertical position and gradient (dashed line) of the neutral plane of a 1 m bar, 

supported at modified Airy points 
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