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CHAPTER 10 
 
 

UNCERTAINTY OF MEASUREMENTS 
 
 
 

“It is much easier to recognise error than to find truth; error is superficial and may be 
corrected; truth lies hidden in the depths” 

Goethe 
 
 

10.1 THE NATURE OF ERRORS 
 
When a length bar is measured in the interferometer, the result of the length calculation 
will be subject to an uncertainty due to the design and operation of the instrument. The 
total uncertainty will be the sum of many contributing uncertainties. These may be due 
to uncertainties in measured physical quantities, imperfections in the theory describing 
the interferometer operation, or departure from the theory in the real world. It is 
important when using the interferometer to measure a bar, to be aware of the 
uncertainty in the measurement. 
 
 
10.1.1 The ‘orthodox’ theory of errors 
 
According to orthodox views of error theory [1], there are 2 basic types of error: 
random and systematic. Random errors can be seen when the measured value of a 
physical quantity is different under nominally identical circumstances. Systematic 
errors can arise when a derived correction is applied to measured data, e.g. the 
refractive index correction. 
 
The two types of error are very different in their effects on the measurement of length 
in the interferometer. If one makes sufficient measurements, the random uncertainties 
will be symmetrically distributed about a mean value, which, in the absence of 
systematic errors, will be the correct value. However, even when many measurements 
are made with systematic errors present, the calculated mean may be biased away from 
the true mean, especially if many of the systematic errors add with the same sign, and 
hence do not cancel each other. 
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There will also be unknown sources of error, whose nature is unknown. These may 
cause the cautious experimenter to overestimate the effects of one or other of the types 
of uncertainty when trying to make allowance for these errors. 
 
Another distinction in the sources of error can be made for a length measuring 
interferometer. There will be some sources of error which are inherent in the basic 
design of the instrument, which will contribute an error, even if a ‘zero-length’ object 
were measured. Other sources of error will depend on the length of the object being 
measured, i.e. they are length dependent. It is useful to quote the total uncertainty of the 
instrument in a form which separates these two types of error: 
 
 U = a + bL  (10.1) 
 
where U is the total uncertainty, a is the inherent uncertainty (random and systematic),  
b is the length dependent uncertainty (random and systematic), and L is the length being 
measured. In order to be able to compare random and systematic errors in this way, a 
common form of reference must be established. 
 
As measurements made by the interferometer will be used at the top of the UK’s 
hierarchy of traceable length measurements, the calculation and expression of the 
uncertainty of the result must be made with reference to standard statistical treatments 
of uncertainty. The basis of the following error analysis is NAMAS document NIS 3003 
[2]. This is similar to the draft WECC document 19-1990 [3]. 
 
 
 
10.1.2 Combination of errors 
 
In the orthodox view, uncertainties or errors are usually combined in quadrature [2,4] 
 
 UTOT = Ui

2

i∑  (10.2) 

 
This is only correct if the estimates of the errors, Ui, are equally weighted, i.e. they 
have the same confidence intervals. For random errors which are normally distributed, 
this method is correct, as the representative uncertainty of a set of observations is the 
variance, σ, which always corresponds to a confidence interval of 0.68, or 68% for a 
normal (Gaussian) distribution. However, the confidence interval of a distribution or 
errors of a systematic nature is not always the same. 
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For high accuracy calibrations, such as those offered by the interferometer, it is usual to 
take a confidence interval of 0.95 (95%) to standardise the uncertainty of measurement 
when comparing measurements made using different instruments. 
 
 
 
 
10.1.3 Random errors 
 
For the purposes of this error analysis it is assumed that the random uncertainties in a 
set of N observations or measurements are from a larger distribution, which is itself 
assumed to be Gaussian. In the absence of sufficient data, the standard deviation can be 
estimated from the range, R, of the measured values by 
 
 σ = ±κR  (10.3) 
 
where κ is approximated by  κ ≈

1
N

 (10.4) 

The standard error of the mean of the N observations is given by 
 
 SEOM = ±

σ
N

 (10.5) 

 
 

To convert this to a confidence interval, the SEOM is multiplied by a factor t, the student 
t factor, which depends on the required confidence interval and the number of 
measurements made. Values of t are tabulated in the literature [5,2,6]. When the 
behaviour of an instrument or uncertainty is well known, either by having made a large 
number of measurements, or by assuming an uncertainty from the specifications of the 
instrument, it is then correct to take a value of t corresponding to an infinite number of 
measurements. At a confidence interval of 95%, this value is t = 1.96 (sometimes 
referred to as k). 
 
Thus the confidence interval for random uncertainties is given by 
 
 CR = ±

tσ
N

 (10.6)  

 
and the total random uncertainty is given by 
 
 UR = CR

2
R∑  (10.7) 
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10.1.4 Systematic errors 
 
When assessing the effect of systematic errors, an estimate of the standard deviation of 
a systematic effect on the mean value of the quantity being measured should be used. If 
this is not possible, then realistic limits for the systematic contribution should be 
estimated. When a number of error distributions are combined, the Central Limit 
Theorem states that the overall combined distribution will tend towards a Gaussian. The 
accuracy of the approximation will depend on the form of the individual distributions 
and their standard deviations. If it is assumed that a systematic error lies within the 
bounds -R/2 to +R/2, then an approximate standard deviation for this distribution will 
be  
 
 σ =

R
2 3

 (10.8) 

 
To convert this to a confidence interval, it is multiplied by a factor ks, which is 
dependent on the required confidence level. For a 95% confidence level, ks = 1.96. 
Thus 
 
 CS = ±

ks R
2 3

 (10.9) 

 
and the overall systematic uncertainty is given by 
 
 US = CS

2
S∑  (10.10) 

 
According to the NAMAS guidelines, provided that ks > 1.8, the probability of the error 
falling within ± Cs will always be greater than for a truly Gaussian distribution of the 
same standard deviation. 
 
 
10.2 BIPM RECOMMENDATIONS ON  ERROR ASSESSMENT 
 
Many scientific and industrial activities require only rough-and-ready ‘uncertainty’ 
estimates using simple techniques. However metrologists and others making 
fundamental physical measurements require a rigorous and objective (i.e. demonstrably 
realistic) theory of errors on which to base accurate estimates of uncertainty. The BIPM 
has issued recommendations for the estimation of experimental uncertainty [7]. 
 
 
A summary of their recommendations follows. 
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1. The uncertainty in the result of a measurement generally consists of several components 
which may be grouped into two categories according to the way in which their numerical 
value is estimated: 
 
     A - those which are evaluated by statistical methods, 
     B - those which are evaluated by other means. 
 
There is not always a simple correspondence between the classification into categories A or 
B and the previously used classification into “random” and “systematic” uncertainties. The 
term “systematic uncertainty” can be misleading and should be avoided. 
 
Any detailed report of the uncertainty should consist of a complete list of the components, 
specifying for each the method used to obtain its numerical value. 
 
2. The components in category A are characterised by the estimates si

2, (or the estimated 
“standard deviations” si) and the number of degrees of freedom vi. Where appropriate, the 
estimated covariances should be given. 
 
3. The components in category B should be characterised by quantities uj

2, which may be 
considered as approximations of the corresponding variances, the existence of which is 
assumed. The quantities uj

2 may be treated like variances and the quantities uj like standard 
deviations. Where appropriate, the covariances should be treated in a similar way. 
 
4. The combined uncertainty should be characterised by the numerical value obtained by 
applying the usual method for combination of variances. The combined uncertainty and its 
components should be expressed in the form of “standard deviations”. 
 
5. If, for particular applications, it is necessary to multiply the combined uncertainty by a 
factor to obtain an overall uncertainty, the multiplying factor must always be stated. 
 
 
 
 
10.3 COMPARISON OF 3 THEORIES OF ERROR AND 
RECOMMENDATIONS 
 
Colclough [2] compared the orthodox and BIPM recommendations on errors and 
considered a third theory, the “Randomatic Theory of Errors” in which all errors are 
treated in the same way as random errors in the orthodox theory. In his analysis, he 
stated that all errors could be divided into 4 classes, with each error belonging to one 
class and one class only. 
 
 
The four classes (illustrated in figure 10.1) illustrate the way in which the observed 
results of an experiment behave when the experiment is repeated several times: 
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Class 1 - each result may differ from the true value by the same amount and with the 
same sign, i.e. the error is constant, 
 
Class 2 - each error may vary randomly realising a stable distribution with a non-zero 
mean, 
 
Class 3 - each error may vary randomly realising a stable distribution with a zero mean, 
 
Class 4 - each error may vary non-randomly (e.g. cyclically or by failing to produce 
convergent distributions, sometimes referred to as a ‘locally systematic error’) 
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Figure 10.1 - Four classes of experimental error 

 
 
Colclough showed that all three theories of errors were flawed: the orthodox theory is 
not rigorous enough in the combination of errors and there is uncertainty as to which 
results contain random errors; the BIPM technique uses approximations of variances and 
is still controversial; the Randomatic theory uses unrealistic distributions and raises 
controversial questions in terms of the law of error propagation. The subject of error 
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theory still raises controversy particularly since the experimenter has to assess 
probabilities in the absence of both statistical data and real data. 
 
It is thus difficult to choose a particular technique for calculating the uncertainty budget 
for the new interferometer. However all the above theories make recommendations 
which are of use in this situation. 
 
 
Recommended analysis 
 
Firstly, the whole of the experimental procedure should be defined, and all sources of 
error identified. A confidence level is chosen, beyond which errors will be regarded as 
improbable. This confidence level must be clearly stated. Each error is then attributed 
to a class: random/systematic or class 1 to class 4. This decision is often taken in the 
absence of trial data by careful consideration of the conditions. 
 
In the case of class 4 errors, either they should be reduced by modification of the 
experimental technique, or maximum errors of the quantity concerned are computed - 
these should be treated as systematic errors. 
 
Next, the maximum and minimum possible or likely values of the class 1 errors and the 
constant components of class 2 errors are estimated, either by reference to assumed 
specifications or by examining error distributions. These errors are propagated through 
to the final measurement uncertainty. These components are added arithmetically to 
give an overall systematic uncertainty in the final result. 
 
All the class 2 and class 3 sources of random errors are identified and propagated 
through to the final measurement uncertainty. These components are combined in 
quadrature to obtain a standard deviation for the random error component. 
 
The systematic uncertainties are then used to define upper and lower limits for the mean 
of the overall random uncertainty giving two worst-case distributions. The upper and 
lower confidence limits of these two distributions are used to arrive at a final estimate 
of the uncertainty. 
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10.4 SOURCES OF UNCERTAINTY 
 
The individual sources of error which affect an individual length measurement made by 
the interferometer will now be examined. These include errors in the measurement of 
physical variables in which there may be several contributing uncertainties and also 
errors due to the design and operation of the interferometer. For each source of error, its 
magnitude will be estimated along with its effect (random or systematic) including 
whether or not it is length dependent. The uncertainties are quoted as uncertainties in 
physical units followed by the corresponding uncertainties converted to length units, 
where L is the length of the bar, in metres. The class of error is also identified for both 
the random/systematic and class 1...class 4 schemes, labelled as e.g. R 3 for a pseudo-
random class 3 uncertainty. 
 
Where error sources relate to manufacturer-specified accuracies or for calibrations of 
equipment, these are for a confidence level not less than 95%. Thus the effect of these 
error may be overestimated by a factor of 1.96 in the final calculation - this is tolerable, 
since in many cases these errors are small and an over-estimation of the final error is 
better than under-estimation. 
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10.4.1 Air pressure measurement 
 
The pressure is measured by a Druck DPI140 pressure transducer (see § 7.3.1). The 
instrument is calibrated at yearly intervals against NPL primary standards. The 
measurement is performed with dry air over 3 pressure cycles. The deviation of the 
measured pressure from the accurately known supplied pressure is noted at 9 points 
during both rising and falling pressure conditions. The calibration is performed at 
approximately 20 °C. 
 
The DPI140 measures the pressure inside the chamber via a sample pipe. The pipe is at 
approximately the same height as the length bar being measured. The optical beam 
diameter at the length bar is 80 mm. The interferometer chamber contains moist air 
from the room at relative humidity (RH) 50% (± 5%). 
 
The following sources of uncertainty have been identified: 
 
Accuracy of NPL working Standard R 3 ± 0.05 mbar ± 1.34 x 10-8 L
Maximum departure of DPI readings from 
mean during up/down cycle 

R 3 ± 0.06 mbar ± 1.61 x 10-8 L

Error in reading at 50 % RH (± 5%), 20 °C 
due to water vapour 

S 1 
R 3 

+ 0.057 mbar 
± 0.0057 mbar 

+ 1.53 x 10-8 L
± 1.53 x 10-9 L

Pressure gradient due to gravity, across 
beam diameter 

S 1 + 0.0034 mbar ± 9 x 10-10 L

Resolution of DPI140 instrument R 3 ± 0.01 mbar ± 2.68 x 10-9 L
   

TOTAL R 3 ± 0.0789 mbar ± 2.12 x 10-8 L
TOTAL S 1 + 0.0604 mbar + 1.62 x 10-8 L
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10.4.2 Air temperature measurement 
 
The temperature of the air in the chamber is measured using a PRT. The PRT is placed in 
a heatsink and is positioned near to the measurement beam, usually behind the bar 
being measured. The temperature is measured by measuring the resistance of the PRT 
using a resistance bridge. The PRT is calibrated at 2 yearly intervals by Temperature 
Section, NPL, against the water triple point and gallium melting point. Equations 
conforming to the ITS-90 specification [8] are used to interpolate between these two 
standard temperatures. The bridge is calibrated monthly by using it to measure the 
resistance of a standard 100 Ω resistor, which is itself calibrated yearly. The PRTs are 
checked every 6 months by using them to measure the temperature of a water triple 
point cell. 
 
The following sources of uncertainty have been identified: 
 
Resolution of resistance 
bridge 

R 3 ± 10 µΩ = ± 0.03 mK ± 2.78 x 10-11 L 

Resistance bridge accuracy:  R 3 ± 1 ppm ± 10 µΩ = 
± 101 µΩ = ± 0.3 mK 

± 2.78 x 10-10 L 

Accuracy of external standard 
resistor 

R 3 ± 8 µΩ = ± 0.024 mK ± 2.22 x 10-11 L 

PRT calibration    
Water triple point accuracy R 3 ± 0.5 mK ± 4.65 x 10-10 L 
Gallium melting point 
accuracy 

R 3 ± 0.5 mK ± 4.65 x 10-10 L 

Interpolating equations R 3 ± 0.13 mK ± 1.21 x 10-10 L 
Drift between calibrations R 3 < ± 0.5 mK ± 9.3 x 10-10 L 
    

TOTAL R 3 ± 0.926 mK ± 8.58 x 10-10 L 
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10.4.3 Air humidity measurement 
 
The humidity of the air inside the chamber is measured by extracting a sample of the air 
through a Michell S3000 dewpoint hygrometer. The S3000 is calibrated by a NAMAS 
accredited laboratory against standard humidity gases at a flow rate of 0.5 l min-1. The 
voltage output of the S3000 is read by an IEEE voltmeter. The voltmeter is calibrated at 
the 0 V and 999.9 mV points using a standard voltage generator. The agreement at 
interpolated voltages is within ± 0.2 mV. Magnus’ equation [9] is used to convert 
dewpoint into partial pressure. This has been compared with other techniques, such as 
Goff-Gratch [10] and found to be in agreement to within 2% RMS over the range 
0 to 30 °C. 
 
The following sources of uncertainty have been identified: 
 
Accuracy of dewpoint of 
standard humidity gases 

R 3 ± 0.25 °C DP = ± 0.207 mbar ± 5.65 x 10-9 L

Resolution of S3000 R 3 ± 0.1 °C DP = ± 0.083 mbar ± 2.26 x 10-9 L
Resolution of IEEE voltmeter R 3 ± 0.1 mV = ± 0.01 °C DP  ± 2.26 x 10-10 L
Accuracy of IEEE voltmeter 
calibration  

R 3 ± 0.2 mV = ± 0.02 °C DP ± 4.52  10-10 L

Accuracy of standard 
voltage source 

R 3 ± 0.2 mV = ± 0.02 °C DP ± 4.52  10-10 L

Humidity gradient between 
sample point and beam 

R 3 ± < 0.05 °C DP ± 1.13 x 10-9 L

Accuracy of Magnus’ eqn R 3 ± 0.2 °C DP ± 4.52 x 10-9 L
   

TOTAL R 3 ± 0.340 °C DP ± 7.70 x 10-9 L
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10.4.4 Air CO2 measurement & Edlén’s equations 
 
The CO2 content of the air inside the chamber is measured by extracting a sample of the 
air (the same as used for the humidity measurement) through an Edinburgh Instruments 
GASCARD CO2 meter. The GASCARD meter is calibrated at two points against standard 
gases with CO2 concentrations of 0 ppm and 370 ppm CO2 by volume. This calibration 
is performed yearly. 
 
The following sources of uncertainty have been identified: 
 
Resolution of GASCARD meter R 3 ± 18 ppm ± 2.65 x 10-9 L 
Accuracy of 0 ppm standard gas R 3 ± 1 ppm ± 1.47 x 10-10 L 
Accuracy of 370 ppm standard gas R 3 ± 30 ppm ± 4.41 x 10-9 L 
Interpolation between calibration points R 3 ± 5 ppm  ± 7.35 x 10-10 L 
Variation in concentration between sample 
point and measurement beam 

S 1 - 10 ppm - 1.47 x 10-9 L 

    
TOTAL R 3 ± 35.4 ppm ± 5.20 x 10-9 L 

 S 1 -10 ppm -1.47 x 10-9 L 
Accuracy of modified Edlén equation with 
CO2 

R 3 ± 1 x 10-8 ± 1 x 10-8 L 
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10.4.5 Laser wavelength 
 
The lasers are all frequency-stabilised helium-neon continuous wave lasers operating at 
632.990876 nm (red), 543.516364 nm (green) and 611.970617 nm (orange). They are 
calibrated by direct comparison with NPL Primary lasers, one of which (at 
approximately 633 nm) represents the UK’s realisation of the metre. The calibration is a 
beat frequency comparison so there is no correction for the refractive index of the air. 
The measured length of the bar is the length measured by the red wavelength as this has 
a lower overall uncertainty than the mean of the lengths measured by three wavelengths 
with equal weighting. The green and orange laser wavelength uncertainties are given 
here for comparison. The lasers are calibrated by direct frequency comparison against 
primary reference lasers at NPL. The primary lasers are stabilised by saturated 
absorption in molecular iodine at the following transitions: 
 
632.991 398 22 nm   (± 2.5 x 10-11)  11-5 R(127) a13 
611.970 770 0  nm  (± 3 x 10-10)   9-2 R(47) a7 
543.516 333 1 nm  (± 2.5 x 10-10)  26-0 R(127) a9 
 
The uncertainties quoted for the wavelengths are the “estimated relative standard 
uncertainties”, which are similar to 1 σ values. 
 
The following sources of uncertainty have been identified: 
 
RED   
Uncertainty of primary standard frequency R 3 ± 2.5 x 10-11 ± 2.5 x 10-11 L
Accuracy of calibration R 3 ± 1 x 10-9 ± 1 x 10-9 L
Variability (short-term) in stabilised test 
laser  

R 3 ± 1.6 x 10-9 ± 1.6 x 10-9 L

   
GREEN   
Uncertainty of primary standard frequency R 3 ± 2.5 x 10-10 ± 2.5 x 10-10 L
Accuracy of calibration R 3 ± 1 x 10-9 ± 1 x 10-9 L
Variability (short-term) in stabilised test 
laser  

R 3 ± 9 x 10-9 ± 9 x 10-9 L

   
ORANGE   
Uncertainty of primary standard frequency R 3 ± 3 x 10-10 ± 3 x 10-10 L 
Accuracy of calibration R 3 ± 1 x 10-9 ± 1 x 10-9 L
Variability (short-term) in stabilised test 
laser  

R 3 ± 3.3 x 10-9 ± 3.3 x 10-9 L

   
RED WAVELENGTH TOTAL R 3 ± 1.89 x 10-9 ± 1.89 x 10-9 L 
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10.4.6 Mechanical - optical effects 
 
No correction is made for the thickness of the wringing film since it is included in the 
definition of the length of the bar when measured interferometrically. However its 
variability can lead to a measurement uncertainty. 
 
The following sources of uncertainty have been identified: 
 
Effect of the source size (see § 4.1.3) S 1 + 4 µm diameter - 4 x 10-13 L 
Source off axis (see § 4.1.3) S 2 

R 2 
+ 50 µm 
± 50 µm 

- 5.6 x 10-10 L 
± 5.6 x 10-10 L 

Chromatic aberration - focal length 
error 

S 1 + 0.47 mm - 4.4 x 10-11 L 

Laser beam diffraction S 1 + 80 mm diameter - 2 x 10-11 L 
Spherical aberration in collimation S 1 - 1 x 10-9 L - 1 x 10-9 L 
Spherical aberration in de-collimator S 1 - 1 x 10-9 L - 1 x 10-9 L 
Prismatic tilt at beamsplitter S 1 + 4.5 fringes - 5.1 x 10-10 L 
    
    
Bar - beam alignment R 3  ± 2 fringes tilt ± 1.62 x 10-9 L 
Shortening due to support points S 1 bar slope < 8 x 10-6 - 6.4 x 10-11 L 
Reference beam alignment  R 3 ± 60 µm off axis ± 8.0 x 10-10 L 
    
    
Phase difference, dispersion and  S 2 -14 nm -14 nm  
surface roughness difference R 2 ± 27 nm ± 27 nm 
Wringing film thickness R 3 ± 5 nm ± 5 nm 
    
Accuracy of fringe fraction result    
and data analysis R 3 ± 0.016 fringe ± 5 nm 
    
 R 3 TOTAL ± 28 nm 

± 1.89 x 10-9 L 
 S 1 TOTAL -14 nm 

- 3.25 x 10-9 L 
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10.4.7 Bar expansivity at 20 °C 
 
Because it is not possible to make all measurements at exactly 20 °C, the measured 
length of the bar is corrected to 20 °C. This requires both a measurement of the 
temperature of the bar and also an estimate of its coefficient of thermal expansion. The 
temperature is measured using two PRTs which are in small copper blocks in thermal 
contact with the bar. The temperature of these PRTs is measured using a resistance 
bridge. The bridge is calibrated monthly by using it to measure an external 100 Ω 
standard resistor. The PRTs are calibrated at 2-yearly intervals and are checked every 6 
months against a water triple point cell. The nominal coefficient of thermal expansion 
used for length bars (and also for gauge blocks over 100 mm in length) is α = 10.7 ppm 
K-1. Variation in the value of α from bar to bar is estimated to be within ± 0.5 ppm K-1. 
The temperature of the bar inside the chamber is 20 °C ± 0.03 °C. 
 
The following sources of uncertainty have been identified: 
 
 
Resolution of resistance 
bridge 

R 3 ± 10 µΩ = ± 0.03 mK ± 3.21 x 10-10 L

Resistance bridge accuracy R 3 1 ppm ± 10 µΩ = ± 101 µΩ 
= ± 0.3 mK 

± 3.21 x 10-9 L

Accuracy of standard resistor R 3 ± 8 µΩ = ± 0.024 mK ± 2.57 x 10-10 L
PRT calibration   
Water triple point accuracy R 3 ± 0.5 mK ± 5.35 x 10-9 L
Gallium melting point 
accuracy 

R 3 ± 0.5 mK ± 5.35 x 10-9 L

Interpolating equations R 3 ± 0.13 mK ± 1.39 x 10-9 L
Drift between calibrations R 3 < ± 0.5 mK ± 5.35 x 10-9 L
Contact of PRT with bar R 3 ± 0.5 mK ± 5.35 x 10-9 L
Non-linear gradient at 20 °C R 3 ± 0.1 mK ± 1.07 x 10-9 L
   

TOTAL R 3 ± 1.05 mK ± 1.13 x 10-8 L
   
Accuracy of nominal α  R 3 ± 0.5 ppm K-1 (@ 20.03 °C) ± 1.5 x 10-8 L
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10.5 SUMMATION OF UNCERTAINTIES 
 
In accordance with the guidelines, the random and systematic (class 3 and class 1) 
uncertainties are summed individually. The length dependent and length independent 
contributions are also treated separately. There are thus four separate error 
contributions: 
 
    S   systematic, length independent 
    SL   systematic, length dependent  
    R   random, length independent 
    RL   random, length dependent 
 
The contributions to S and SL are summed arithmetically, whereas the contributions to 
R and RL are summed in quadrature. The random (class 3) uncertainties are then 
multiplied by a factor of 1.96 to obtain results at a confidence level of 95%. The final 
totals are: 
 
 S  =  - 14 nm 
 SL  =  + 1.15 x 10-8 L 
 R  =  ± 28 nm 
 RL  =  ± 6.22 x 10-8 L 
 

where L is the length of the bar in metres. 
 
Thus a full uncertainty statement for the interferometer is 
 

The central length measurement uncertainty for the  
Primary Length Bar Interferometer is 

-14 nm ± 28 nm + 1.15 x 10-8 L ± 6.22 x 10-8 L  
at a confidence level of 95%, for a bar of length L metres. 

 
Depending on how the errors are combined, it is possible to obtain different estimates 
of the error for a particular measured length.  
 
Firstly, the maximum and minimum possible values can be calculated as per the 
guidelines: (S + SL + R + RL) and (S + SL - R - RL) respectively. This will be referred to 
as the RECOMMENDED uncertainty estimate. 
 
Secondly, the quadrature sum of the random uncertainties can be either added or 
subtracted from the systematic error total: (S + SL ± R2 + RL

2 ). This will be referred 

to as the STANDARD uncertainty estimate. 
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The final method of combining the errors is that recommend by the BIPM where the 
systematic errors are combined in quadrature with the random errors to produce two 
figures, one length dependent, the other length independent, which are then added in 
quadrature: S2 + SL2 + R2 + RL2.  This results in a figure of ± 30 nm ± 64 L nm. For 
comparison, the NPL Length Bar Machine has an uncertainty of length measurement of 
± 68 ± 350 L nm). This will be referred to as the BIPM uncertainty estimate (this is the 
most common technique of quoting uncertainties for metrological purposes). 
 
These different combinations are plotted in figure 10.2. 
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Figure 10.2 - Plot of total uncertainty in length measurement over length range 0.1 - 1.5 m 

 

 

 

The differences between the techniques are due to the whether they sum the 
components in quadrature (sign symmetric) or arithmetically (sign asymmetric).The 
difference between the three techniques is approximately 20 nm, though this depends 
on the length of the bar.  Except for bars of length 300 mm and below, the 
RECOMMENDED uncertainty is larger than the other techniques and is thus more 
‘safe’ to quote if a simple analysis is required. The BIPM and STANDARD estimates 
are in good agreement for longer bars. Thus the importance of quoting the result in the 
most comprehensive form, where all the terms are listed, can be seen.  
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10.6 POSSIBLE STEPS TO IMPROVE THE ACCURACY 
 
This accuracy can be improved significantly by reducing the uncertainty associated 
with the thermal expansion coefficient of the bar. As detailed in chapter 8, the 
interferometer was also designed to measure the coefficient of linear thermal expansion 
of length bars (and long gauge blocks). The contribution of the uncertainty in thermal 
expansion coefficient is ± 1.5 x 10-8 L  for an uncertainty of ± 0.5 x 10-6 K-1 in α. From 
§ 8.6 it is seen that by measuring the expansion coefficient in the interferometer, this 
can be reduced to an uncertainty of between ± 0.2 and ± 0.05 x 10-6 K-1, which 
corresponds to a length measurement uncertainty of between ± 6 x 10-9 L and ± 1.5 x 
10-9 L.  
 
 
 
10.7 COMBINED UNCERTAINTY BUDGETS OF INSTRUMENTS 
 
As stated in § 9.4 the differences between the measurements of set 1455 in the LBM 
and the LBI all fall within the uncertainty budget of the LBM alone, except for the 300 
mm bar which has been explained. It was thus not necessary to consider the 
combination of the uncertainty budgets of the two instruments. For reference, this will 
now be discussed briefly. When comparing two results from different instruments it 
should be remembered that the results are given as single values with confidence limits. 
To a good approximation, the errors of the two instruments are randomly distributed 
and can be combined statistically. Standard statistical tests [11] can be used to ascertain 
a confidence level for whether or not the two sets of results share a common overlap of 
any statistical significance. In the case of the results given in chapter 9, the differences 
between the two instruments’ results are all within the 95% confidence limits of the 
LBM uncertainty budget alone, and so there is 95% confidence that the results agree, 
within the stated uncertainties of the instruments. 
 
[2002 re-release note: Since the thesis was completed, the Guide to the Expression of 
Uncertainty in Measurement (GUM), published by ISO, has become the de facto 
standard for uncertainty budget preparation. The style set out in the GUM is quite 
different to that presented in this thesis.]
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