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CHAPTER 4 
 
 

ALIGNMENT, COHERENCE AND OPTICAL 
TESTING 

 
 

“Every physicist thinks he knows what a photon is,  
I spent my life trying to find out what a photon is, and I still don’t know” 

A Einstein 
 
 

4.1 ALIGNMENT OF THE INTERFEROMETER 
 
Before the interferometer can be used to perform measurements it must be properly 
aligned. There are two stages to the alignment procedure - the initial alignment which 
must be performed whenever the interferometer has been disturbed or a component 
replaced, and the accurate alignment which is performed periodically or after thermal 
expansion measurements have been made, when the alignment may have drifted. 
Although length measurements are possible with the interferometer only approximately 
aligned, they will be in error due to the Abbe effect: the measurement beam will not be 
travelling parallel with the length to be measured. The final alignment ensures that the 
measurement beam travels parallel to the axis of the bar, so minimising this error. 
 
 
4.1.1 Approximate alignment of interferometer 
 
Depending on how the interferometer has been adjusted or modified, only certain parts 
of the initial alignment may be necessary. 
 
 
4.1.1.1 Laser beam launching into fibres 
 
The output beam of each laser is focused via a system of lenses into the core of a single 
mode optical fibre (see § 3.2.2). This requires careful alignment of the end of the fibre 
with the focal spot of the microscope objective lens. Firstly, the fibre is positioned by 
eye close to the focal spot by adjusting the x-y positioners. Next, the correct focusing is 
achieved by careful longitudinal positioning of the fibre ferrule until the laser speckle 
observed on the mount of the objective lens is at its greatest. The speckle is due to 
interference between parts of the beam reflected from the surfaces of the ferrule and the 
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fibre. The size of the speckle is largest when the beam is focused on the ferrule/fibre 
surface. Finally, the fine adjusters are used to position the fibre on the focal spot and to 
adjust the focus. The output beam from the fibre is monitored by eye or by the CCD 
camera in the interferometer until the output beam reaches maximum intensity. The 
laser launch is then correctly aligned. 
 
 
4.1.1.2 Component positioning in interferometer 
 
The baseplate of the interferometer has carefully positioned holes for mounting the 
optical components and their holders. By following the schematic diagram of the 
interferometer it is simple to fix the components in the right position by bolting them to 
the baseplate. Exceptions to this are the final 45° mirror, the TV camera and the 
reference mirror assembly, which all have some degree of freedom in their positioning 
to allow for adjustment. 
 
 
4.1.1.3 Fibre positioning in collimator 
 
The optical fibre bundle inside the brass ferrule must be positioned on the axis of the 
collimator lens. This is achieved by placing an optical flat against the upright surface of 
the collimator lens mount and adjusting the position of the fibre until the return spot of 
this autocollimator arrangement is coincident with the source. The lens holder was 
machined so that the upright is parallel to the rim against which the lens rests. Provided 
the source is within 1 - 2 mm of the axial focal point, the beam will be sufficiently 
collimated. 
 
 
4.1.1.4 Reference mirror alignment 
 
After aligning the collimator, the reference mirror is aligned with the collimated beam. 
The collimated beam reflects off the collimator mirror and passes through the 
beamsplitter and is directed by a 45° mirror onto the reference mirror (see figure 3.17). 
The 45° mirror is adjusted until the beam reflected from the reference mirror is aligned 
with the interferometer axis. This axis is the path of the axial ray from the source, 
through the centre of the collimator lens, through the beamsplitter to the reference 
mirror, and the reverse path. This axis will thus be a normal to the reference mirror 
surface, once the latter has been aligned. 
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4.1.1.5 Measurement beam alignment 
 
Having defined the reference axis by adjusting the reference mirror assembly, the other 
beam reflected at the beamsplitter is the measurement beam which must be aligned with 
the bar to be measured. This is easily accomplished since the interference fringes will 
be ‘fluffed out’ when the reference and measurement beams are co-axially aligned. 
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Figure 4.1 - Aligning the measurement beam with the length bar 

 
 
Once the length bar supports have been adjusted so that the bar is approximately 
aligned with the measurement beam, the mirror in the measurement beam can be used 
to accurately align the beam with the axis of the bar, as shown in figure 4.1. 
 
 
 
 
4.1.1.6 Alignment of length bars with measurement beam 
 
Having aligned the measurement beam with the axis of one bar, the support carriage is 
translated until another bar is in the measurement position. The bar supports are 
adjusted to approximately align the bar with the measurement beam. Any remaining 
mis-alignment can be removed at the time of measurement by adjusting the 
measurement beam mirror using the PZTs. 
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4.1.1.7 Alignment for double-ended interferometry 
 
For double-ended measurements, the interferometer is aligned as follows. 
 
Firstly, the collimator is aligned by using the autocollimation technique, with an optical 
flat placed against the collimator mount and the fibre position adjusted until the return 
spot is incident on the fibre end. When the fibre is correctly positioned, the reverse 
beam will overfill the end of the fibre due to aberrations and diffraction and will thus 
illuminate the cladding - this can be observed as an increased glow in the fibre. This 
technique is also suitable for checking the focal positioning. 
 
Next, the reference arm is aligned with the collimated beam by adjusting the tilt of the 
reference mirror until the return spot is autocollimated onto the end of the fibre. 
 
The bar is placed on the supports, this time positioned at the Airy points of the bar 
because there is no platen wrung to one end. The measurement beam is adjusted until 
the fringes are fluffed out on the face of the bar. The axes of the bar, the measurement 
beam and the reference beam are now aligned, assuming the bar is not out of tolerance 
on the squareness of the end face with the axis of the bar. 
 
The roof mirror system is inserted. This produces 3 additional return spots at the source 
corresponding to the beams returned from the front face of the bar and the two 
oppositely propagating beams which travel around the bar. The return spots of these 
latter two beams are symmetrically located either side of the spot from the end of the 
bar, which will be displaced vertically from the source until the vertical tilt of the two 
mirrors is corrected. Adjustment of the mutual orthogonality of the mirrors directs the 
two symmetrical spots onto the source.  
 
When the roof mirrors are not orthogonal, the fringes in the background of the image 
will exhibit a ‘V-shaped’ characteristic, as shown in figure 4.2. This will give rise to 
extra tilt in the interferogram of the fringes on the rear face of the bar. 
 
When the roof mirrors are adjusted for mutual orthogonality, the tilt of the pair of 
mirrors is adjusted until the fringes in the background are fluffed out. The 
interferometer is then completely aligned for double-ended measurements. Any 
difference in tilt between the two images of the ends of the length bar is due to 
parallelism errors in the bar. Once the roof mirrors have been set orthogonal with each 
other, only tilt of the pair of mirrors from the vertical plane will influence the fringes in 
the image. The imaging of the front face of the bar is unchanged from the single-ended 
case, except for the magnification. 
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Figure 4.2 - Incorrect adjustment of roof mirror orthogonality (bar removed for clarity) 

 
 

 
 
Figure 4.3 - Correct adjustment of roof mirror orthogonality (bar removed for clarity) 

 
 
4.1.2 Accurate alignment of the interferometer 
 
The accuracy of length measurements is critically dependent on the accuracy of 
alignment of the interferometer. To produce interference fringes visible on the monitor, 
the reference and measurements beams must be aligned with each other to within 
approximately 1 arcmin. However, even with fluffed out fringes, the alignment may 
still be in error and the length measurement inaccurate due to the reference and 
measurement beams not being aligned with the axis of the bar being measured. 
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4.1.2.1 Cosine error due to measurement beam mis-alignment 
 
Consider the bar and platen in figure 4.4. 
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Figure 4.4 - Cosine error of measurement beam 

 
The measured length is half the difference in optical path between the two beams, 
∆OPD.  
 
 ∆OPD = a + b 
 

 a =
L0

cosθ
b = a cos2θ =

L0 cos2θ
cosθ

 

 

 ∴
∆OPD

2
=

a + b
2

=
L0

2 cosθ
1+ cos2θ[ ] 

 

 =
L0

cosθ
cos2 θ[ ] 

 
 measured length = L0 cosθ  (4.1) 

 
Hence, unless the measurement beam is aligned with the axis of the bar, the measured 
length will be subject to a length dependent cosine error. Note, the effect of the end 
faces of the bar not being perpendicular to the axis of the bar are dealt with in chapter 
10 - for now it will be assumed that the bar is a right circular (or rectangular) cylinder. 
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 4.1.2.2 Alignment of the three interferometer axes 

 

 
There are three axes which must be aligned in the interferometer: the axis of the bar, the 
reference beam axis and the measurement beam axis. To align all three, a common 
point of reference must be used: this is the source spot. First, the collimator is aligned 
using the method described above. Next, the reference arm is aligned with the 
collimator, followed by alignment of the measurement beam (including the bar). Thus 
the initial alignment of the reference beam with the collimator is important. A special 
technique was developed to align this beam. 
 
 
4.1.2.3 Two-fibre autocollimation technique 
 
The system uses three single-mode optical fibres which have had the buffer coating 
removed from both ends (see § 3.2.2). At one end the fibres are cemented into a tight 
bundle. The other end of each of the fibres is individually mounted and polished, see 
figure 4.5. Each fibre in the bundle can serve two functions; it can act as the light 
source for the collimator when light from a laser is focused into the fibre core, and 
secondly the fibre can be used to detect the return spot, when used in an autocollimation 
arrangement, for which another fibre is used as the light source, see figure 4.6.  
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Figure 4.5 - Three fibre system 

 
In principle it is possible to use this technique with just one fibre acting as both source 
and detector though the extra optical components required, such as beamsplitters or 
couplers, could introduce losses which would make the detection of the return spot 
more difficult.  
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 When used in the autocollimation arrangement of figure 4.6, the reference mirror of the 
interferometer is used to reflect the beam back to the source where one of the fibres in 
the bundle is used to detect the return spot. The fibre bundle is moved in three 
orthogonal directions and the intensity of the light incident on the detector fibre is 
monitored using a photodetector placed at the output end of the fibre, after it has been 
removed from the laser launch optics. When the detected intensity is maximised, the 
source and detector fibres are symmetrically positioned on either side of the axis of the 
interferometer, and the principal focus. The off-axis position of the source is then half 
the separation of the fibres, which is typically 50 µm. This technique aligns the 
collimator with the reference arm of the interferometer. The expected obliquity error 
from this system is less than 5.6 x 10-10, or 0.56 nm in 1 m. After alignment, the 
detector fibre may be replaced and used to launch a third laser source. 

 

 
 

LASER
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SOURCE FIBRE

RETURN FIBRE
 

 
 

Figure 4.6 - Autocollimation arrangement 

 
Evaluation measurements have been made using this system illuminated by the 633 nm 
red laser. Figure 4.7 shows the peak in the detected intensity as the fibre bundle was 
positioned radially and axially. These results were repeatable after coarse adjustment 
over several millimetres of travel.  
 
Assuming the achromatic collimator lens to be diffraction limited, the expected central 
maximum (Airy disc) of the return spot diffraction pattern should be ~25 µm in 
diameter [1]  and should result in a peak of width ~20 µm when a 4 µm diameter fibre 
is scanned across the moving diffraction pattern, as occurs when the fibre bundle 
undergoes radial motion. This can be seen in figure 4.7(a). It is thought that the non-
symmetrical peaks in the observed data are due to cross-talk from the adjacent fibre 
which becomes partially illuminated.  
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Figure 4.7 - Detected intensity during (a) radial positioning and (b) axial positioning of the fibre bundle 
(normalised units) 

 
When diffraction theory is applied to an un-aberrated circular pupil with defocus it 
predicts minima in the diffraction pattern, spaced at 1.1 mm along the focal axis. The 
results shown in figure 4.7(b) are consistent with the theory. 
 
The single-mode fibre system thus provides a simple, efficient, speckle free light source 
for an interferometer. The autocollimation arrangement using one fibre as a detector 
allows accurate repositioning of the light source, allowing the collimator beam to be 
aligned with the interferometer axis, whilst minimising the obliquity effect due to the 
source. However, with this system the return intensity is low and requires a sensitive 
detector. It is easier to observe the additional light scattered in the fibre cladding, as 
described in  § 4.1.1.7. 
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 4.1.3 Obliquity effect due to position and size of light source 

 

 
The light source for the interferometer is the end of an optical fibre, positioned at the 
focal point of a 100 mm diameter achromat. The source diameter is that of the fibre, 
which is approximately 4 µm. The fibre is positioned to be nominally on axis, at the 
correct focal length. However small errors in the positioning can lead to the light source 
being off axis. This, as well as the finite size of the source contribute errors in the 
measurement, which can be regarded as obliquity errors, i.e. they cause the apparent 
length of the measured object to be slightly different from the true length. These effects 
can be removed by using a correction factor. Here, it is shown that the correction 
factors for the interferometer are very small, due to the design of the collimator, and 
can be neglected. 
 
When the source is positioned off-axis, the effect can be thought of as causing a small 
angular deviation, θ, of the measurement path with respect to the object axis. For small 
θ, there is a correction factor per unit length, C1, which is (1-cosθ), which is  
approximately θ2/2 . For an aperture of negligible size, at distance s off axis, the 
correction factor is thus 
 

 C1 =
s 2

2 f 2
 (4.2) 

 
where f is the focal length of the lens. Assuming that the positioning error of the twin-
fibre system is ± 50 µm, then for the interferometer, the correction factor for off-axis 
positioning is 
 

C1 = 5.6 x10-10 
 

There is also an obliquity effect due to the finite size of the source [2]. This can be 
considered as the sum of the effects of all infinitesimally small elements which 
constitute the source. This factor, C2 , is thus 
 

C2 =

x 2

2 f 2 x dφ dx
0

r
⌠ 
⌡ 
 

0

2 π
⌠ 
⌡ 
 

x dφ dx0
r∫0

2 π
∫

 

 

 C2 =
r 2

4 f 2  (4.3) 

 
For the single mode fibres used, r ~ 2 µm, thus C2  =  4.4 x10-13 and is hence 
negligible. The total obliquity effect is thus 5.6 x 10-10 or  a length measurement error 
of ± 0.56 nm in 1 m. 
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4.1.3.1 Obliquity effect due to source size - full derivation 
 
Although it is possible to have a correctly aligned interferometer, the size of the source 
will affect the measurements of phase performed in the interferometer.  
 
Bruce [2] considers the extra phase shift introduced to the system due to the source size 
as an obliquity effect. Consider the circular aperture on axis, in figure 4.8. 
 
 

r 
f

θ 

dx 
x d φ 

 
 

Figure 4.8 - Obliquity effect due to a circular aperture on axis of interferometer 

 
The intensity of the interference fringes is given by 
 

I = cos2 K   
 

where K = phase difference/2 
 

i.e.     K = 2πL / λ  
 
where L is the length being measured. For an element of the source at angle θ to the 
axis, size dφdx 
 
 δI = cos2 (K cosθ)xdφ dx  (4.4) 

 
For the total effect from the source, integrate over aperture  
 

I = cos2 (K cosθ)xdφ dx0
r

∫0

2π
∫  

 

Since θ is small, we can approximate cos θ  as 1 −
x2

2 f 2  
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I = 2π cos2 K − Kx2

2 f 2
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= 2π
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now substituting 
 

 
u = 2K 1− x2

2 f 2

 
 
  

 

du =
2Kxdx

f 2

 (4.5) 

 

 I = 2π
1
2

⌠ 
⌡ cosu + 1[ ] f

2K
du  (4.6) 

 

I =
πr2

2
−

πf 2

2K
sin 2K cos

Kr 2

f 2 − cos2K sin
Kr2

f 2 − sin 2K
 
 
 

 
 
 

 

 
Substituting for the area of the source A, the obliquity angle θ and the phase factor ∆  
 

A = πr2 ∆ =
Kθ 2

2
θ =

r
f

  

 

 I =
A
2

1 +
sin ∆

∆
cos(2K − ∆) 

 
 
 

 (4.7) 

 
Thus the fringes are symmetrical, but displaced by the phase factor ∆ from their normal 
positions. The fringe contrast is also reduced by the factor sinc(∆). 
 

However for small ∆, approximate 
sin ∆

∆
≈ 1, thus 

 

 
I = A

2
1 + cos(2K − ∆[ ]

= Acos2 K −
∆
2

 
 

 
 

 (4.8) 

 
This equation describes normal cos2 fringes from an aperture area A, but displaced in 
phase by ∆/2 compared with those obtained using a point source (on axis).This is the 
same as the factor C2 above. 
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For 0 ≤ ∆ ≤ π  the factor sinθ/θ in equation (4.7) is positive and the fringe displacement 
is given by ∆/2. At ∆ = mπ (m=1,2,3...) equation (4.7) predicts that the fringes vanish. 
For the interferometer, with r = 1.8 µm, f = 1.5 m, λ = 633 nm, the first zero of fringe 
visibility occurs at L = 400 km. Since L < 2 m, the fringes should have good visibility 
for all sizes of length bar. 

 

 
Whilst it may not be obvious that a symmetrical source, positioned on axis can produce 
non-symmetrical shifts in the interference fringes, these effects have been observed by 
Bruce [2] with good agreement (0.001 fringe) between the measured and predicted 
fringe shifts up to a shift of approximately 0.25 fringe for a 0.78 mm diameter pinhole. 
The results of these calculations have been confirmed by Thornton [3] using a different 
analysis. It is easier to see the reason for this shift by noting that for any point not on 
axis, the corresponding beam from this point will travel at an angle to the axis of the bar 
being measured (obliquity angle) and must therefore measure the length short by the 
usual cosine factor. Thus all elements of the source lying on an annulus at a particular 
radius will all contribute an obliquity error of the same sign and magnitude. The results 
derived above take into account all such annuli. 
 
 
4.1.4 Collimation check using a shearing plate interferometer 
 
A shearing plate interferometer can be used to translate wavefront curvature into 
rotation of straight fringes [4]. When placed into a properly collimated beam with no 
aberrations, parallel straight fringes are observed which are parallel to the reference line 
of the shearing plate. The radius of curvature, R, of an incorrectly collimated beam can 
be measured using a shearing plate 
 

 R =
sδ

λ sinθ
 (4.9) 

 
where s is the shearing distance, δ  is the fringe spacing and θ  is the fringe rotation 
from the reference line, measured on the sheared image. Measured values in the 
collimated beam of the interferometer were s = 7 mm, δ = 7 mm, for λ = 612 nm. A 
value for θ was estimated to be 0.08 rad (from trigonometry), this places a lower limit 
on R of 1000 m. The effect of the wavefront curvature on the obliquity is derived as 
follows. 
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Figure 4.9 - Convergence of un-collimated wavefront 

 

 α ≈
d

2R
 (4.10) 

 
For a value for d of 80 mm, α = 4.0 x10-5. This causes an obliquity effect of magnitude 
α2/2, which is 1 x 10-9. The residual wavefront curvature is due to spherical aberration 
of the achromatic collimator lens, see § 4.1.7.2. 
 
 
4.1.5 Tilt in the measurement beam 
 
There is an observed change in tilt in the interferogram of approximately + 6 fringes 
across the image field, when the green laser illuminates the interferometer compared to 
the red, but only - 1 fringe between the orange and red illuminations (see figure 4.10). 
A possible source for this differential tilt has been identified, and an estimate of both 
the magnitude of the tilt and its corresponding obliquity effect are calculated. 
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(a) λ = 633 nm  
 

(b) λ = 612 nm  
 

(c) λ = 543 nm  
Figure 4.10 - Difference in tilt between three wavelengths (a) 633 nm, (b) 612 nm, (c) 543 nm 
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 4.1.5.1 Prismatic dispersion at the beamsplitter 

 

 
The beamsplitter is wedged at 0.5° to prevent multiple reflections from the non-coated 
side from interfering with the correct reflection. There is no compensator plate in the 
interferometer, and thus the beamsplitter acts as a dispersive prism of apex angle γ = 
0.5°. 
 
 
The angular dispersion dδ  for a wavelength change δλ is given by [5]  
 

 dδ =
−2sin γ / 2( )d ′ n 
1 − ′ n 2 sin2 (γ / 2)

 (4.11) 

For the material of the beamsplitter, fused silica, dn’ can be found from measurements 
of n’(λ) : 
 

n(632.8 nm) = 1.45702 
n(546.1 nm) = 1.46008 

 
thus dn’ = 0.00306 for δλ = 633 - 546 nm, which is approximately the difference 
between the red and green. This results in 
 

dδ = -2.7x10-5 rad 
 

This additional tilt produces an extra number of fringes across the image area (width 
approximately 45 mm) given by  
 

2 × 45 ×10−3 tan(dδ)
633 ×10−9  

 
~ 4 fringes 

 
This is only an approximate calculation because values of dn’ for the actual material of 
the beamsplitter will be slightly different from those above, however the direction of 
the additional tilt which is observed is horizontal. This corresponds to the same plane in 
which the beamsplitter is wedged and is thus a likely candidate for the extra tilt. 
 
 
4.1.5.2 Methods for compensation of tilt 
 
The tilt could be corrected by use of a wedged compensator, matched to the 
beamsplitter. However this would be prone to further spurious reflections and 
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 wavefront aberrations and since the obliquity effect of the additional tilt is negligible, it 
is not worth correcting in the interferometer, as the software removes any tilt from the 
final phase maps. 

 

 
An alternative solution would be to use a system of wedged beamsplitter and 
compensator plate, angled such that the ghost reflections are trapped inside the 
beamsplitter by successive total internal reflection [6] . 
 
 
4.1.6 Chromatic aberration - tolerance on collimator focal position 
 
Chromatic aberration in the collimator lens leads to a variation in the position of the 
focal point with respect to wavelength. The variation between the red and green ends of 
the spectrum is approximately [7] f/2000 where f is the focal length of the collimator 
achromat, see figure 4.11. 
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Figure 4.11 - Chromatic dispersion - effect on focal length of collimator 

 
For the achromat used in the Primary Length Bar Interferometer, f = 1500 mm. The 
manufacturer’s data states that the variation in focal length between wavelengths 633 
nm and 588 nm is 0.47 mm (i.e. y = 0.47 mm) or f/3200. The effect of the afocal 
positioning of any of the optical fibres can be calculated as follows. 
 

xy = f 2  
 

and  y = f/3200 
 
hence  x ~ 4800 m 
 
Consider one ray of a convergent beam, focal length 4800 m, travelling at an angle θ to 
the axis of a length bar. The error in the measured length of the bar due to the angle of 
the beam will be given by 
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 ∆L ≈
Lθ 2

2
 

 
and  θ =

d
2(F + x)

 

 
substituting gives ∆L =4.4 x 10-11 L 
 
If a tolerance is imposed such that ∆L < 10-9 L then it is simple to show that the 
tolerance on the focus of the collimator is 2.5 mm, which is easily achieved - as shown 
above, the maximum departure for the achromat used is approximately 0.47 mm. 
 
 
 
4.1.7 Optical component quality and spherical aberration 
 
4.1.7.1 Quality of optical components 
 
Measurements of surface quality and subsequent wavefront aberrations of the most 
important optical components can be found in Appendix B. The majority of the 
wavefront aberration was found to be spherical aberration. 
 
4.1.7.2 Effect of spherical aberration in collimator 
 
If it is assumed that the wavefront of the interferometer measurement arm contains 
aberrations, of which the main component is spherical aberration, then the effect of this 
on the measured length of the length bar can be calculated as follows. 
 
Let the wavefront be of the form W(x) = ax4, where x is a co-ordinate across the 
wavefront, see figure 4.12. 
 
 

 

X

W(x)

Xmax  
Figure 4.12 - Spherically aberrated wavefront 
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then the angular aberration will be given by  θ ≈
∂W
∂x

 

 
∴  θ ≈4ax3 (4.12) 
 
If we now examine the paths travelled by two beams, one un-aberrated, the other 
aberrated, at an angle θ to the other, where θ is given by the above expression.  
 

112

Surface 1

Surface 2
Aberrated 

beam
Un-aberrated 

beams

L

θ

 
Figure 4.13 - Interference between two spherically aberrated beams 

 
These two beams will have phases 
 

 φ1 = 
2π
l  2L         φ2 ≈ 

2π
l  

2L
cosq  

 
The phase difference between the two beams will be φ1 - φ2, 
 

φ1 - φ2 = 
4πL

l 



1 - 

1
cosq   

 

i.e.  ∆φ ≈ 
2πLq2

l   (4.13) 

 
From (4.12) and (4.13),  

 a =
λ∆φ
2πL

1
4x3  (4.14) 

 
Substituting λ = 633 nm, and x = 40 mm, the radius of the collimated beam, the path 
length, L = 1.5 m (for a 1.5 m bar), and from the Zygo test measurements of the 
achromat, W(x) = 0.15 λ, a is found to be 0.0371 m-3. Substituting for a gives a value 
for ∆φ of ∆φ = 0.0013, or 1/770 fringe. This is equal to 0.4 nm, and hence is a small 
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systematic error. This value is similar to the value of 1 x 10-9 obliquity error obtained 
from the estimate of residual wavefront curvature in § 4.1.4. 

 

 
 
4.1.8 Effect of squareness of length bar on measured length 
 
The length of a length bar is defined in BS 5317 : 
 
length. This is defined, with the bar mounted horizontally and referred to the standard 
reference temperature of 20 °C , as the distance from the centre of one of its faces to a flat 
surface in wringing contact with the opposite face, measured normal to the surface. 
 
For a bar which is not perfectly square, i.e. the end faces are not both perpendicular to 
the axis of the bar and also parallel with each other, this can lead to differences between 
the defined and measured lengths of a bar, depending on how the bar is measured. 
 
Consider a non-parallel, singularly non-square length bar, with defined length Ld  and 
another length Lm. 
 

 

L d 

Lm
θ 

 
Figure 4.14 - Non-square, singularly non-parallel length bar 

 
Because the interferometer is set up with the platen surface normal to the measurement 
beam (± 2 to 3 fringes of tilt), the length measured by the interferometer is Ld, the 
defined length of the bar. The NPL Length Bar Machine measures the mechanical 
central length, Lm, which will be different to the defined length by a factor of size cosθ, 
or approximately θ2/2.  
 
The size of the angle θ will depend on the squareness of the bar. According to the 
standard, bars should be within 1.2 µm of squareness, for bars up to 400 mm in length, 
and within 2.5 µm of squareness for longer bars. These values are equivalent to 4 and 8 
fringes of squareness error, respectively. By converting these values to angles, it can be 
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shown that these are equivalent to a length measurement error (for the Length Bar 
Machine) of 1.6 x 10-9 L for bars up to 400 mm, and 6.4 x 10-9 L for longer bars.  
 
Note that these errors are for the Length Bar Machine and not for the interferometer, as 
the latter measures the length of bars in accordance with the definition of length in 
BS 5317. 
 
4.2 COHERENCE IN THE INTERFEROMETER 
 
The length measurements made in the interferometer are measurements of phase across 
a relatively large aperture, up to 8 cm in diameter. This requires a high level of both 
temporal coherence and in the case of double ended interferometry, spatial coherence, 
as well as high quality optical components with minimum wavefront aberrations. 
 
Temporal coherence is of particular importance as the interferometer has relatively 
large path lengths and the accuracy required of the length measurements dictates a 
narrow laser linewidth which is closely linked to temporal coherence. Analogous to the 
coherence time of the light emitted from the source is the coherence length (as opposed 
to the spatial coherence measured across the beam pupil). The coherence length must be 
at least equal to the total path length travelled by the beams before striking the detector 
array surface. 
 
Although spatial coherence is not so important when using the interferometer in its 
conventional Twyman-Green arrangement due to the common path, non-sheared optical 
arrangement, it is however very important when making double-ended measurements 
(see § 3.3.3). In this arrangement interference is formed between different parts of the 
beams, some of which have been spatially inverted, i.e. sheared. This demands a high 
degree of spatial coherence between all points in the beam as well as the temporal 
coherence described above. This can be visualised as a coherence volume within which 
the beam must maintain both temporal and spatial coherence. In wave terms both the 
magnitude and direction of the wave-vector k must be well defined and invariant. For 
the interferometer the beam must be spatially coherent across the maximum shearing 
distance of approximately 8 cm and along a path length of up to 7 m, making a 
coherence volume of 0.035 m3. 
 
The factors affecting coherence will now be examined and estimates of the spatial 
coherence and temporal coherence length will be made. For a detailed development of 
the concept of coherence see Hopkins [8,9,10,11]. 
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4.2.1 Temporal coherence 
 
The temporal coherence of a source is a measure of the spread of frequencies (or 
wavelengths) emitted by the source. A typical quasi-monochromatic source such as a 
vapour lamp emits frequencies in the range ω0 ± ε / 2  of equal amplitude and random 
phase. This can be illustrated through the use of the temporal coherence function, γ τ( ) . 
 

 γ τ( ) ≡
A(t)A*(t + τ)

A(t)2 A(t + τ) 2
 (4.15) 

 
where A(t) is the amplitude at time t, A(t+τ) is the amplitude at time t+τ, and the bar 
above the symbols represents a mean value over a long interval. For a quasi-
monochromatic source γ is unity for small values of τ but then decreases as τ increases. 
In fact γ(τ) is the Fourier transform of the spectral intensity (Wiener-Khinchine 
theorem) and is also related to the visibility of interference fringes, given by 
Michelson’s expression 
 

 V =
Imax − Imin

Imax + Imin

 (4.16) 

 
When interference is formed between two beams of equal intensity, with one beam 
delayed by τ, then V = γ (τ ) .  

 
To obtain good contrast fringes in the interferometer, γ(τ) must be close to unity for τ of 
the order of 2.3 x 10-8 seconds (time taken for beam to travel 7 m) in other words the 
coherence time of the source, τc must be longer than 10-8 s. For most standard light 
sources such as spectral lamps, the coherence time τc is approximately 10-9 s due 
mostly to linewidth broadening. There are two main sources of broadening: Doppler 
broadening and collision broadening. 
 
The effect of Doppler broadening is to spread the line-shape into a Gaussian profile 
[12] with half width 
 

 σ = ω0
kBT
mc2  (4.17 

 
where kB is Boltzman’s constant, m is the mass of the particle undergoing the transition,  
T is the temperature of the gas (in K) and ω0 is the central frequency of the radiation, or 
in terms of wavelengths 
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 σ = λ 0
kBT
mc2  (4.18) 

 
As an example, for a standard krypton lamp with λ0 = 5.6 x 10-7 m at 80 K, the half-
width is 1.6 x 10-13 m, or 3 parts in 107. 
 
The effect of collision broadening is much greater than that of Doppler broadening at 
atmospheric pressure. This arises due to collisions between atoms in the discharge 
removing coherence between separate emissions. Thus only in the periods between 
collisions when each atom is travelling freely will there be coherence. However, most 
vapour lamps operate at a pressure of a few millibars and under these conditions the 
effect of collision broadening is less than that of Doppler broadening. Overall, it can be 
seen that vapour lamps do not posses sufficient temporal coherence required for long 
path length interferometry. 
 
Fortunately light from a laser is much more coherent, particularly light from a stabilised 
laser. This is due to the natural coherence exhibited by stimulated emission where the 
phase of the light emitted by an atom is the same as the wave stimulating it to emit. The 
limiting factor which determines the linewidth arises from the instabilities of the lasing 
cavity mirrors together with the small amount of spontaneous emission present in the 
discharge. A typical linewidth for a He-Ne laser, (see § 3.2.1), is 200 MHz (4 x 10-7) 
decreasing to about 50 kHz for a stabilised laser (1 x 10-10). This is equivalent to a 
coherence time of 6 x 10-6 seconds which is sufficient for the interferometer. 
 
 
 
4.2.2 Spatial coherence 
 
Spatial coherence is a function of the source size: if light from different areas of the 
source arrives at the image plane with different phases, the visibility of the fringes will 
decrease due to extra destructive interference. 
 
 
 
4.2.2.1 An approximate estimate of the spatial coherence 
 
Consider an incoherent source on axis, illuminating a slit of width x. Behind the slit is a 
screen. Two points on the screen, A and B are separated by a distance ∆.  
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Figure 4.15 - Coherence of an extended source with slit and screen 

 
The extended source produces diffraction in the region between A and B. For an 
incoherent source, the interference patterns at A and B are not related as their respective 
source points are un-correlated and so the two interference patterns will on average 
cancel each other. If the fringes at A and B have period ~ Dλ/x and if the two sets are in 
anti-phase, then 

 ∆ =
Dλ
2x

 (4.19) 

 
From similar triangles  ∆ =

aD
f

 

 

therefore for fringe cancellation  x =
λf
2a

 

 

or  x =
λ

2θ
  (4.20) 

where θ  is the angular size of the source. 
 
Thus since the coherence distance in the plane of the pupil is λf/2a the coherence 
distance is increased by minimising the angular size of the source, as expected. If the 
source is of fixed size then the remaining option is to increase the source-pupil distance. 
The source diameter, a, is 4 µm thus the spatial coherence distance across the 
wavefront should be approximately 12 cm. 
 
 
4.2.2.2 Detailed estimate of the spatial coherence 
 
Just as the temporal coherence function γ (τ) is related via a Fourier transform to the 
spectral intensity I(ν), the van Cittert [13]-Zernike [14] theorem states that the spatial 
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coherence function γ (r) is related to the Fourier transform of the intensity distribution 
of the source, I(θ,φ). This will now be derived (after Lipson & Lipson [12]). 

 

 

image 
plane

θ x

xsin θ

α

aperture of 
source

source sphere

S

S'

L
θ'

 
 

Figure 4.16 - Source sphere centred on image plane origin 

 
Consider the source illustrated in figure 4.16. For an incoherent source the amplitudes 
at different points on the sphere, g(θ) and g(θ’) are unrelated. 
 
The amplitude in the image plane at x = 0 is A(0) 
 

 A(0) =
1
L

g(θ )e− ikSPdθ∫  (4.21) 

 
and at x = x is A(x) 
 

 A(x) =
1
L

g(θ )e−ik (SP −x sinθ )dθ∫  (4.22) 

 
Defining c(x) ≡ A(0)A*(x)  
 

 
c(x) =

1
L2 g(θ )e−ikSP dθ g*(θ)e−ik (SP −sin θ)dθ∫∫

=
1
L2 g(θ )g* (θ)e− ikx sinθ dθ∫

 (4.23) 
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Now  γ (x) ≡
c(x)
c(0)

 and g(θ)g*(θ ) = I(θ)  (4.24) 

 

c(x) =
1
L2 I(θ )∫ e−ikx sin θ dθ  

 
 
For small angles approximate sin θ by θ 
 

 ∴ γ (x) =
I(θ )e−ikxθ dθ∫

I(θ)dθ∫
 (4.25) 

 
i.e. γ (x) is the normalised Fourier transform of I(θ) . 
 
As an example, if I(θ)  is uniform and unity within an incoherent circular source of 
angular radius α, then γ (x) is the normalised Fourier transform of this function which is 
a Bessel function of the first kind, i.e. 
 

 γ (x) =
2J1(kαx)

kαx
 (4.26) 

 
(For an alternative treatment see for example Mandel and Wolf [15] ). 
 
γ (x) falls to zero at x = 0.61λ/α.  
 
For the interferometer, α = 1.3 x 10-6, thus the first zero of γ (x) should be at 
x = 0.30 m, i.e. the wavefront exhibits at least some spatial coherence up to a diameter 
of 30 cm. This confirms the order of magnitude estimate of 12 cm, to within a factor of 
2.5. 
 
The above derivations have assumed an incoherent source. A variant on the van Cittert-
Zernike theorem will now be given which does not make this assumption and so will be 
valid for the coherent source used in the interferometer. 
 
Consider a plane, (ξ,η) containing a source Σ (see figure 4.17). The intensity of an 
element dσ of the source at a point A with co-ordinates (ξ,η) is given by I(ξ,η). A 
second plane (x,y) is separated from the first by a distance R, and contains two points 
P1 and P2.  
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Figure 4.17 - Coherence between source and image planes separated by R 

 
Assume that the radiation from Σ is uniform over all angles. The complex amplitudes at 
P1 and P2 produced by an element dσ of Σ are u1 and u2 respectively.  
 

u1 =
I(ξ ,η)

R1

e−ikR1 u2 =
I(ξ ,η)

R2

e−ikR2 k =
2π
λ

 

 
γ12 defined before as γ (x) is the complex degree of coherence between P1 and P2 and is 
given by  
 

 γ 12 =
1
I1I2

I ξ , η( )
R1R2Σ

⌠ 
⌡ 
 eik R 2 − R1( )dσ  (4.27) 

 
i.e. the coherence factor between P2 and P1 is the same as the complex amplitude at P2 
in the diffraction pattern associated with the aperture Σ with the pattern centred on P1. 
 
If P1 is at the origin in the (x,y) plane and P2 is at (x,y) and A is at (ξ,η) then 
 

 R2 − R1 =
x2 + y2

R1 + R2

−
2

R1 + R2

xξ + yη( ) (4.28) 

 
For small values of x,y and with a sufficiently large source 
 

 R2 − R1 ≈ −
1
R

(xξ + yη) (4.29) 
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 ∴γ 12 =
1

R2 I1I2

I(ξ , η)e
−ik (xξ+ yη )

R dξdη
Σ∫  (4.30) 

 
i.e. γ12 is the Fourier transform of I(ξ,η). This is the same result as the van Cittert-
Zernike theorem, except that it holds for incoherent sources. This result is for large 
apertures only. It will now be developed for small apertures. This will be examined for  
the case of a circular source, angular radius α, centred on the origin, after Hopkins [8]. 
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Figure 4.18 - Coherence from a uniform circular source centred at origin 

 
Using circular co-ordinates as in figure 4.18 
 

r ≡
sin θ
sinα

0 ≤ r ≤ 1 

 
From the above definition of γ12, if Σ is small, then R2 ~ R1 

 

 
1

R1R2

≈
1

R1
2  (4.31) 

 

 

dσ
R1R2

=
R1dχ R1 tanθ dθ

R1R2

= tanθ dθ dχ
 (4.32) 
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 ∴
dσ

R1R2

=
sin2 α
cos2 θ

rdrdχ  (4.33) 

 
Now require exponential term of γ12 in polar co-ordinates 
 
Define ρ = x 2 + y2 . It can be shown that 

 

 R2 − R1 =
ρ 2

R1 + R2

−
2

R1 + R2

xξ + yη( ) (4.34) 

Thus the exponential term becomes 
 

 ik
ρ 2 cosθ

2R
−ρsin θ cos χ − φ( ) 

 
 

 
 
 

 (4.35) 

 

Now with cosθ = 1 −
1
2

sin2 θ  this becomes 

 

ik
ρ 2

2 R
1 −

1
2

sin2 θ 
 

 
 

− ikρ sinθ cos(χ − φ )

ikρ 2

2R
−

ikρ 2

4R
sin2 θ − ikρ sin θ cos(χ − φ)

 

 
Now, correcting a misprint in Hopkins’ paper, setting  z = kρsinα   gives 
 

 
ikρ2

2R
−

iλ
8πR

zr( )2 − izrcos(χ − φ) (4.36) 

 

In practice, z < 10 and r < 1, also λ/R << 1 and therefore the term in 
λ

8πR
(zr)2  

can be neglected. Thus the exponential term becomes 
 

 e
ikρ2

2R
− izr cos(χ − φ)

 (4.37) 
 
Substituting this and (4.33) in the expression for γ12 gives 
 

 γ 12 =
1
I1I2

I(ξ ,η)sin2 α
cos2 θ

e
ikρ2

2R e−izr cos(χ −φ )rdrdχ
0

2π

∫0

1

∫  (4.38) 

 
removing terms independent of r and χ gives 
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 γ 12 =
sin2 α

I1I2

e
ikρ 2

2 R I(ξ , η)
cos2 θ

e− izr cos(χ − φ )rdrdχ
0

2π

∫0

1

∫  (4.39) 

 
If the source is of uniform brightness, I(ξ,η) is constant and equal to I, but will decrease 
by a factor of cos2θ according to the angle θ between the normal to the plane of the 
source and the propagation direction 
 
 

 

γ 12 =
I sin2 α

I1I2

e
ikρ 2

2R e−izr cos(χ − φ)rdrdχ
0

1

∫

=
Iπ sin2 α

I1I2

e
ikρ 2

2R 2J1(z)
z

 (4.40) 

 
Approximating  I1 ~ I2 = Iπsin2α  gives 
 

 γ 12 =
2 J1 (z)

z
e

ikρ2

2 R  (4.41) 

 
This is the same expression as the van Cittert-Zernike theorem except for the factor  
 

 e
ikρ2

2R   
 
which represents the phase difference of P2 relative to P1 due to different optical path 
lengths from the source to the two points. This is obvious from the limiting case where 
the source size vanishes 
 

 

α → 0 , z → 0 ,
2 J1 (z)

z
→ 1

γ 12 → e
ikρ 2

2 R

 (4.42) 

 
The magnitude of γ12 becomes unity and represents a simple phase difference between 
the two points. Hopkins stated that the modulus of this phase factor was approximately 
unity except for small α whereas in fact it is always unity and does not depend on α.  
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 After passage through the collimating lens, all such points in the beam should have the 
same phase, though in the case where α is non-zero, the coherence will vary as the 
separation of the points, as dictated by γ12. 

 

 
Figure 4.19 shows the variation of γ12 over the two dimensional plane (x,y) for the case 
of the interferometer. Figure 4.20 is a section through this function at y = 0 showing the 
detail. It is common to take a value of γ12 of 0.88 as being the cut-off point for 
coherence (similar to Strehl criterion). From figure 4.21, this occurs at x = 0.075 m , for 
y = 0, i.e. the diameter of the coherent disc at the entrance pupil is 7.5 cm. Any two 
points in the double ended system which are sheared by less than 7.5 cm when imaged 
onto each other will be coherent and produce fringes of suitable contrast.  
 

 
Figure 4.19 - Variation of coherence over area of image for the Primary Length Bar Interferometer 
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Figure 4.20 - Section through figure 4.19 showing detail 
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Figure 4.21 - Region of figure 4.19 about coherence limit of 0.88 

 
 
The coherence between points in the beam after the collimating lens may be found 
using the propagation formulae of Zernike [14] or Hopkins [8]  However if it is 
assumed that there are no wavefront aberrations due to passage through the collimating 
lens then, according to Zernike: 
 
“The degree of coherence in a plane illuminated though a lens is the same whether a 
source of uniform brightness be imaged on the plane or placed directly behind the lens 
- the phase-changing properties have no influence on the coherence.” 
 
And from Hopkins: 
 
 Γ '

21 = eik [W( x2 , y2 )− W (x1 ,y1 )]Γ21  (4.43) 
 
where (x1,y1) and (x2,y2) are points in the exit pupil, W(x,y) is the wavefront aberration 
at point (x,y) in the pupil, Τ21 is the coherence in the entrance pupil and Τ ’21 is the 
coherence in the exit pupil at the corresponding point. 
 
 
These calculations of the coherence expected in the interferometer are supported by the 
fact that fringes are observed when the interferometer is operating in double-ended 
mode, although the fringes corresponding to the sheared beams do have lower contrast 
compared to the un-sheared fringes. The maximum shearing distance is approximately 
8 cm, for which the above calculation predicts a coherence of approximately 0.87, just 
outside the conventional limit of 0.88. The reduction in fringe contrast can be seen in 
figure 4.22. The right image of the bar is of the front face, where the image is formed in 
the same way as for single-ended interferometry. The left image is that of the rear face 
of the bar, which requires a longer path difference and image shearing. The worst 
contrast fringes are those in the background which are formed by light which has 
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 travelled twice along the length of the bar and also been sheared. Extra tilt has been 
added to the fringes for easier viewing. 

 

 

 
Figure 4.22 - Double-ended interferogram showing different fringe contrasts  

 
Note that  the effect of tilt due to the wedged beamsplitter is still present in the double-
ended interferograms (see figure 4.23). The change in tilt with wavelength is the same 
as before on the front and rear faces of the bar. The change in tilt of the background 
fringes is much greater, e.g. with the optics adjusted for zero background fringes for the 
red wavelength, at the orange wavelength there are approximately 8 fringes of tilt 
across one roof mirror and at the green wavelength there are approximately 11 fringes 
of tilt (see figure 4.23). 
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Figure 4.23 - Double-ended images for three wavelengths, same alignment of optics in all three images 
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