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CHAPTER 5 
 
 

FRINGE ANALYSIS & PHASE STEPPING 
INTERFEROMETRY  

 
 
 

“Wo viel Licht ist, ist starker Schatten.” 
(“Where there is much light, the shadows are deepest”) 

Goethe 
 
 

5.1 ANALYSIS OF INTERFERENCE FRINGES 
 
5.1.1 Introduction to interference fringe analysis 
 
Using interferometry it is possible to compare measured and reference wavefronts to a 
high degree of accuracy. Interferometric measurement techniques such as holographic 
interferometry, speckle interferometry, moiré etc. have found many applications from 
the measurement of engine blocks [1], hip joint prosthesis design [2] to high accuracy 
measurement of optical components such as mirrors, flats and lenses. 
 
To achieve these accuracies it is necessary to use computer evaluation of the 
interference fringes. Image processing can be used to enhance the fringe patterns and 
remove noise before the phase is evaluated. Post-processing of the data often includes 
finite element analysis or boundary element analysis techniques to solve specific 
application problems. 
 
Each technique requires determination of the interference phase at a number of points in 
the field to generate a phase distribution or phase map. There are many techniques for 
phase extraction, each suited to a particular experimental design. These techniques are: 
fringe skeletonisation, phase-shifting, phase-stepping, Fourier transform, temporal 
heterodyning, spatial heterodyning (carrier frequency) and phase locking. There are 
excellent review articles which deal with the variety of techniques used [3,4,5,6,7,8]. 
 
At its most simple level, fringe analysis can be performed by eye. In the Twyman-
Green interferometer shown in figure 5.1, interference fringes are produced on a surface 
or optical component to be tested. The fringes are detected by a CCD array and 
displayed on a monitor. The equation for the intensity of the fringes in the plane of the 
detector array is 
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 I x, y, t( ) = a x, y( )+ b x,y( )cos φ x,y( )+ ΦR x, y,t( )[ ] (5.1) 

 
Here, a(x,y) represents the variation of the background illumination, b(x,y) describes the 
noise and contrast variations, φ(x,y) is related to the surface to be measured and 
ΦR x, y,t( )  is the reference phase, or wavefront at time t. The co-sinusoidal variation of 
I leads to a set of interference fringes, of co-sinusoidal intensity. 
 
The fringes can be regarded as contour lines of surface height of the test object, spaced 
at intervals of λ/2 where λ is the wavelength of the light source. Using these fringes as 
contours, one can determine by eye, wavefront aberrations or surface defects to about 
λ/5 or λ/10, simply by observing the positions of the fringes in the interferogram. It is 
easy to detect defects such as spherical aberration, coma, or to spot inhomogeneities in 
refractive components, or flatness errors in mirrors.  
 
For more accurate measurement, it is necessary to be able to sub-divide the fringes, i.e. 
to measure the phase at all points in the display. This requires some computer 
processing of the intensity distribution in the image. 
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Figure 5.1 - Example Twyman-Green interferometer for optical testing 
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5.1.2 Fringe skeletonisation methods 
 
Fringe skeletonisation is an extension of the fringe analysis performed by eye based on 
tracking fringe maxima or minima across the field. The computer algorithm searches 
for maxima and minima in the digitised interference pattern [9]. The phase at these 
points corresponds to multiples of π. Many algorithms exist for tracking along a fringe 
extremum, usually based on finding the normal to the maximum gradient of the 
intensity, or by following a path of minimum change of intensity. The result is a set of 
lines, one pixel wide, which correspond to the extrema, and are often overlaid on the 
original image for comparison. The analysis then requires the joining together of lines 
which are disconnected (such as near a defect) followed by numbering of the lines. This 
last step must usually be performed with user input, especially where lines are 
discontinuous [10]. The phase at points lying between fringe extrema is calculated by 
linear, polynomial or spline interpolation along a suitable direction in the phase map.  
 
The main advantage of fringe skeletonisation is that it requires only one digitised 
interferogram and so temporal drifts of the experimental arrangement have little effect 
on the phase measurement. However, the accuracy is approximately λ/10, the 
computation time is long, there is no averaging between many frames to suppress noise 
and it is sometimes difficult to assign the correct sign to phase gradients, since the 
intensity change can appear the same for both positive and negative gradients. 
 
 
5.1.3 Fourier transform methods 
 
The Fourier transform technique requires only one interference pattern, for which the 
reference phase, ΦR x, y,t( )  can be arbitrarily set to zero. Expanding the cosine function 
in (5.1) using Euler’s formula, and the definition 
 

 c x, y( )=
1
2

b x, y( )eiφ x, y( )  (5.2) 

 
gives 
 
 I x, y( ) = a x,y( )+ c x, y( )+ c* x, y( )  (5.3) 

 
Applying the two-dimensional Fourier transform to this gives 
 
 I u,v( ) = A u,v( )+ C u,v( )+ C* u, v( )  (5.4) 
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Since I(x,y) is real in the spatial domain, it follows that I u,v( ) is Hermitian in the 
spatial frequency domain, i.e.  is even and ℜ I u,v( ){ } ℑ I u,v( ){ } is odd. The amplitude 
spectrum is symmetric about the zero-frequency position, and so C u,v( )  and C  
contain the same information. By bandpass filtering in the spatial frequency domain, 

 and  can be removed to leave C

* u,v( )

A u,v( ) )C* u,v( u,v( ) , which when the inverse Fourier 
transform is applied gives c(x,y) which is now complex. The phase can then be 
measured from  
 

 φ x, y( ) = arctan
ℑ c x, y( ){ }
ℜ c x, y( ){ } (5.5) 

 
In effect, the Fourier transform method is a least squares fit of a linear combination of 
harmonic functions to the interference pattern. 
 
If only one interferogram is used in the evaluation of the phase, then there is an 
ambiguity in the sign of the phase, due to loss of information during the filtering stage. 
This can be resolved by using a second interferogram with the reference phase shifted 
by up to π.  
 
 
5.1.4 Temporal heterodyning methods 
 
In temporal heterodyning, the two interfering wavefronts are formed from sources 
which have different frequencies, approximately a few kHz apart [11]. A common 
technique for generating these frequencies is to split a laser output into two modes by 
magnetic (Zeeman) splitting. The interferogram oscillates at the frequency of the beat 
between the two waves. A photodetector is used to sample the signal at points in the 
interferogram (there are no CCD detector arrays with high enough bandwidths). The 
phase can be measured either as the difference in phase between two detector points or 
between a single point and a reference phase signal. Phase distributions can only be 
measured by scanning the detector in the image. 
 
 
5.1.5 Spatial heterodyning methods 
 
To perform spatial heterodyne interferometry with frequency domain processing, a 
system used for Fourier transform interferometry has an additional set of carrier fringes 
introduced by tilting a mirror. These heterodyne carrier fringes have spatial frequency 
f 0 . The carrier frequency will cause a phase gradient across the image of size 2π f 0 x. 
This then takes the place of Φ  in equation (5.1). This carrier frequency is 
removed by shifting the filtered spectral components in the frequency domain. This 

R x, y,t( )
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allows the two components C u,v( )  and C* u,v( ) to be effectively separated, making the 
filtering operation easier to perform. In effect, the single interferogram can be regarded 
as a multi-channel interferogram, where the different channels are separated spatially, 
i.e. in different pixels in the image, rather that at the same pixels, but separated in time, 
as in temporal techniques. 

) πf 0x)

 
Another version of spatial heterodyning uses pointwise multiplication of the digitised 
intensity data by cos 2πf 0x(  and sin 2(  to analyse the data in the spatial domain. 
If the spatial frequency of the fringes is similar to the frequency of these additional 
quadrature terms, then low frequency difference components can be separated by a low 
pass filter. These components are in phase quadrature in terms of the phase to be 
measured. 
 
The technique of spatial heterodyning requires superposition of fringes (either real or in 
software) of a similar spatial frequency to the original interferometric fringes. This may 
not be possible where the original fringes are not of equal inclination and spacing. The 
technique using extra tilting of the mirror requires that the phase and amplitude of the 
wave to be measured must not change appreciably within the period of the spatial-
carrier-frequency [12], i.e. the surface to be measured must be flat or a large tilt must be 
given to produce many fringes across the surface. 
 
 
5.1.6 Phase locking methods 
 
In the phase locking technique, the phase of the reference beam is modulated 
sinusoidally by less than λ/2, at a frequency ω. A bandpass filter centred at ω is used to 
sample the intensity at each point in the interferogram. At points where φ(x,y) = Nπ the 
detected intensity averages to zero. Thus the phase lock technique is a dynamic method 
of fringe skeletonisation, in real time. The technique has the same disadvantages as that 
of fringe skeletonisation. 
 
 
 
5.1.7 Summary of phase measurement methods 
 
Table 5.1 shows a summary of the phase measurement methods examined so far as well 
as the technique of phase-stepping interferometry, which will be examined shortly. 
Whether one technique is better than another depends on the application. 
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 Fringe 

skeleton 
Phase 

stepping 
Fourier 

 transform 
Temporal 

heterodyne 
Spatial 

heterodyne 
Phase 

locking 
No. of images 

 
1 3,4,5 1(2) 1 per pixel 1 1 

Resolution (λ) 
 

1 - 0.1 0.1 - 0.001 0.1 - 0.03 0.01 - 0.001 0.1 - 0.03 1 - 0.1 

Measurement 
at all points 

no yes yes yes yes no 

Noise 
suppression 

partial yes yes partial yes partial 

Sign  
detection 

no yes no(yes) yes (yes) no 

Difficulty 
 

low high low very high low medium 

Computation 
time 

long short long very long very long long 

Real time 
 

some some no some no yes 

 

Table 5.1 - Summary of phase measurement techniques 

 
 
 
 
 
5.2 PHASE-STEPPING INTERFEROMETRY (PSI) 
 
 
5.2.1 History of PSI 
 
Phase-measuring, Phase-Shifting or Phase-Stepping Interferometry is a technique used 
in the analysis of interference patterns generated by multiple beam interferometry. PSI 
has existed in its basic form for less than 3 decades, and may be regarded as temporal 
multiplexing of the interferograms to be analysed (temporal-carrier) where the use of an 
extra time variable reduces the problem of phase extraction to reading the phase of a 
sinusoidal signal, with varying time co-ordinate, but fixed spatial co-ordinates 
[13,14,15,16,17,18,19]. 
 
There has been a resurgence of interest in PSI as a measurement technique since the mid 
1980s. This has been due to recent advances in the equipment required in PSI for image 
detection and processing, together with a general reduction in cost of computer power. 
Also, there has been a trend for measurement instruments and systems to become more 
automated and objective in their analyses - PSI is ideal for this, as it is easily 
implemented on standard ranges of computers. 
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5.2.2 Basic theory of PSI 
 
PSI, as its name suggests, involves the variation of phase within the interferometer, by a 
controlled amount. All designs of phase-stepping interferometers have a number of 
features in common: 
 
(i) The interferogram is imaged onto a detector e.g. CCD TV camera, photodiode 

array, holographic plate 
 
(ii) The interferogram is a comparison between the wavefronts generated by test and 

reference surfaces 
 
(iii) The relative phase of one of the interferometer arms (reference or test) is varied 

with respect to the other by a fixed and known amount, either continuously 
(phase-shifting) or in discrete steps (phase-stepping) 

 
(iv) The intensity of the interferogram is either summed continuously or stored at each 

step, depending on which method is used in (iii) 
 
(v) After the phase-stepping or shifting is complete, the analysis of the stored data is 

undertaken. A major advantage of phase-stepping interferometry is that a detector 
array such as a CCD camera can be used to make measurements simultaneously at 
a very large number of points covering the interference pattern, the resolution 
being limited by the optical magnification and the detector pixel size. 

 
 
 
5.2.3 Derivation of generic PSI equations 
 
The phase calculation of PSI is based on the fact that the intensity I(x,y) at a point (x,y) 
in the interferogram is the result of interference of two wavefronts. Considering the 
Twyman-Green interferometer shown in figure 5.2, which is assumed to be made from 
optically perfect components, i.e. there are no aberrations. 
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Figure 5.2 - Idealised interferometer for testing surfaces 

 
In figure 5.2 and the following derivation, z(x,y) is the surface profile of the object 
under test, λ is the wavelength of the monochromatic light, l is representative of the 
total (average) optical path difference between the two surfaces. Wavefronts from the 
reference and test arms are given respectively by 
 
 wr = ae2ikl  (5.5) 
 
 wt = be2ikz( x, y )  (5.6) 

 
with k = 2π/λ and a and b are the amplitudes of the interfering wavefronts, due to 
different reflectivities of the surfaces. In the interference pattern, 
 
 I(x, y, l) = (wr + wt )(wr + wt )

*  (5.7) 

 
 = a2 + b2 + 2ab cos(2k(z(x,y) − l))  (5.8) 

 
The term  represents the background intensity, or DC level, and the variation 
of 

(a2 + b2 )
cos(2k(z(2ab x, y) − l)) represents the interference fringes, observed as co-sinusoidal 

variations in intensity, I(x,y,l). One can vary the intensity I(x,y,l) either by keeping l 
constant, and changing x or y - i.e. moving across a non-flat surface, or by keeping x 
and y constant and varying l, the optical path difference. In PSI, l is varied by varying 
the phase of one of the beams, e.g. by moving the reference mirror longitudinally along 
the beam axis. As the value of l  is varied, the intensity I(x,y,l)  at each point (x,y) in the 
interferogram varies in a co-sinusoidal manner (assuming linear detection, non-
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 aberrated optics etc). The premise of PSI is that by knowing the variation in l, and 
observing the variation in I(x,y,l) at each point in the interferogram, one can correlate 
the two, and hence retrieve z(x,y) in terms of k (or λ). 

 

 
This can be seen by re-writing (5.8): 
 
 I(x, y, l) = a0 + a1 cos2kl + b1 sin2kl  (5.9) 

 
where  and b  are functions of x and y, and hence contain information about z(x,y). 
Now if the phase in one beam is stepped (by varying l) in n steps, each of which is 1/n 
of a fringe i.e. λ/2n in size, then, using the orthogonality relationships for sin and cos 

a1 1

 
 
 a0 =

1
n

I(x, y, li ) = a2 + b2
i =1

n∑  (5.10) 

 

 a1 =
2
n

I(x, y, li) cos2kli = 2abcos(2kz(x,y))
i =1

n∑  (5.11) 

 

 b1 =
2
n

I(x,y, li )sin2kli = 2absin(2kz(x, y))
i=1

n∑  (5.12) 

 
from which 
 

 
b1

a1

=

2
n

I(x, y, li)sin 2klii =1

n∑
2
n

I(x, y, li) cos2klii =1

n∑
=

2absin(2kz(x,y))
2abcos(2kz(x,y))

 (5.13) 

 
 = tan(2kz(x, y))  (5.14) 
 

 ∴ 2kz(x,y) = arctan
b1

a1

 

 
  

 
  (5.15) 

 

 ∴ z(x, y) =
1
2k

arctan
b1

a1

 

 
  

 
  (5.16) 

 
i.e. z(x,y) can be determined (to within modulo 2π) from a  and b , the summed 
intensities at (x,y). This is the basis of PSI. There are many variations of this basic 
equation, which are detailed in § 5.3. 

1 1
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5.2.4 Typical applications of PSI 
 
PSI has been widely used [14,20,21] in the testing of optical components [22,23]. The 
range of surface variation measurable by basic PSI is limited to a few microns. This is 
due to the compromise between having lots of fringes across the interferogram either as 
the result of tilt or due to large test surface deviations, and the requirement that each 
fringe must be large enough in width to be imaged onto at least 2 detector pixels. If the 
fringe is smaller than 2 pixels, each pixel will integrate the intensity of the whole 
fringe, and no fringe modulation will be observed during phase stepping. Another 
requirement of these techniques is that the surface under test is smooth and has no 
discontinuities present of magnitude greater than the measurement wavelength, as these 
discontinuities cannot be distinguished from the 2π discontinuities present in the 
wrapped phase data. 
 
 
5.2.5 Phase variation methods for PSI 
 
In general, any technique which varies the phase in one or more of the interferometer 
beams can be used in PSI. The most common techniques include: moving diffraction 
gratings [24], moving the reference mirror by use of a PZT, the Bragg effect in an 
acousto-optic modulator [25] and rotating a half-wave plate in a polarised 
interferometer [24,26]. 
 
 
 
5.3 PHASE STEPPING TECHNIQUES 
 
5.3.1 Basic phase-stepping techniques 
 
Let the system of fringes in an interferometer have visibility V which is defined as 
 

 V =
Imax − Imin

Imax + Imin

 (5.17) 

 
The mean intensity of the two beams is I0 . When the phase of the reference beam is Φ , 

the intensity at a point in the interferogram will be given by 
 
 
 Ir = I0 + I0V cos(Φ − φ)  (5.18) 
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Taking the expression  
 
 I(x, y) = I0 1+ V(x, y) cos(Φ − φ(x,y))( ) (5.19) 

and using  
 

cos(A − B) = cos A cos B + sin Asin B  
gives 
 
 I(x, y) = I0 + I0V cosφ (x, y)cosΦ + I0V sin φ(x,y)sin Φ (5.20) 

 
Now using phase stepping, i.e. picking discrete values Φ r  of Φ given by 
 

 
  
Φr =

r −1( )2π
R

with  r = 1,2,K,R  (5.21) 

 
the intensity at a particular point (x,y) in the interferogram will be given by 
 
 Ir = I0 + I0V cos(Φr − φ ) (5.22) 

expanding this gives 
 
 Ir = I0 + I0V cosΦ r cosφ + I0V sin Φr sin φ  (5.23) 

 
 
Multiplying (5.23) by cosΦ r and sinΦ r  separately gives 
 
 

Ir cos Φr = I0 cosΦ r + I0V cos φ cos2 Φr + I0V sinφ sinΦr cos Φr  (5.24)  

 
Ir sin Φr = I0 sin Φr + I0V cosφ cos Φr sin Φ r + I0V sin φ sin2 Φr  (5.25)  

Now summing equations (5.23) to (5.25) over r   
 
 
 Ir =

r=1

R∑ I0 + I0V cosΦ r cosφ + I0V sinΦ r sinφ
r=1

R∑r=1

R∑r =1

R∑  (5.26) 

 
Ir cosΦ r =

r=1

R∑ I0 cosΦ r + I0V cos φ cos2 Φr + I0V sin φ sin Φr cosΦ rr =1

R∑r =1

R∑r =1

R∑ (5.27) 

 
Ir sinΦr =

r=1

R∑ I0 sinΦr + I0V cosφ cos Φr sin Φ r + I0V sinφ sin2 Φ rr=1

R∑r =1

R∑r =1

R∑ (5.28) 

 
Now using the orthogonality relationships for sin and cos: 



146 Chapter 5 
  

 

sin(mx)sin(nx)
x

2π∑ =
0 ∀ m ≠ n

π  ∀  m = n ≠ 0
 
 
 

 
 
 

 

 

cos(mx)cos(nx) =
0 ∀ m ≠ n

π  ∀  m = n ≠ 0
 
 
 

 
 
 x

2π∑  

 
cos(mx)sin(nx) = 0 ∀  m,n

x

2π∑  

 
 
then equations (5.26) to (5.28) reduce to 
 

  (5.29) Ir = RI0
r =1

R

∑
 

 Ir cosΦr =
1
2

RI0
r =1

R

∑ V cosφ  (5.30) 

 

 Ir sin Φ r =
1
2

RI0
r =1

R

∑ V sinφ  (5.31) 

 
from which it follows that 
 

 
2 Ir sinΦr

r=1

R

∑

2 Ir cosΦ r
r=1

R

∑
=

RI0 sin φ
RI0 cosφ

   (5.32) 

and hence 
 

 tan φ =
Ir sinΦr

r=1

R

∑

Ir cosΦ r
r=1

R

∑
 (5.33) 

 
 
This is the basic equation for all multi-step phase-stepping techniques.  
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 5.3.2 Phase-shifting interferometry 

 

 
There is another form of phase-measuring interferometry, phase-shifting interferometry. 
Here the phase is continuously varied and the detector integrates the intensity at each 
point over a range of phases. Grievenkamp [27] shows the integrated intensity to be 
 

 Ii(x,y) =
1
∆

I0 (x, y) 1+ γ 0 cos[φ (x, y) + α (t)]{
xi − ∆ / 2

x i }
+ ∆ / 2

∫ dα(t) (5.34) 

 
I0 (x, y)is the average intensity at detector point (x,y), γ0 is the modulation of the fringe 
pattern (corresponds to V used above), αi is the average value of the relative phase shift 
for the ith exposure, φ(x,y) is the test wavefront phase to be determined, and ∆ is the 
phase shift over which the intensities are summed. 
 
Thus  

Ii(x,y) = I0 (x, y) 1 + γ 0 sinc(∆ / 2) cos[φ (x, y) + αi ]{ } 

 
Substituting ∆ = 0 (integrating over zero phase range), the above equation reduces to 
the phase-stepping case. The phase-shifting technique is often referred to as the 
‘Integrating Bucket’ approach. 
 
 
 
5.3.3 Four quadrant arctangent routine 
 
The basic phase-stepping or phase-shifting equations have an initial limitation. Simply 
applying an equation of the form 
 

φ = arctan
a
b

 
 

 
  

 
returns values of φ in the range -π/2 to π/2 i.e. a range of π. This is unsatisfactory as 
each interference fringe corresponds to a range of phase values over the range 0 to 2π . 
This is easily resolved by noting that a corresponds to a sinusoid and b to a co-sinusoid, 
and thus the signs (+ or - ) of these quantities can be used to uniquely define a quadrant 
for each calculation of φ, based on the four possible combinations. 
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a b φ 
+ + φ 
+ - π-φ 
- + 2π-φ 
- - π+φ 

 

Table 5.2 - Four-quadrant lookup table 

 
Suitable adjustments are made when either a or b or both are zero. Thus by use of a PSI 
technique based around equation (5.33), followed by application of a 4-quadrant 
arctangent, the relative phase at each point in the interferogram can be determined 
modulo 2π. 
 
 
5.3.4 Two position phase-stepping technique 
 
A two position technique has been used by Santoyo et al [28] in the analysis of 
Electronic Speckle Pattern Interference, where the fringes are defined by a different 
equation to that of conventional interferometry. It is not suitable for general PSI, as with 
only two measurements, I1 and I2, it is not possible to solve for all three variables of the 
general PSI equation. However the technique is suited to the analysis of speckle pattern 
interferograms, as these are of the form 
 
 I x, y( ) ∝ sin θ + ∆φ / 2( ) (5.35) 

 
where ∆φ is the phase change due to surface deformation, and θ is the relative phase 
between the 2 beams. Hence with 2 values of θ , separated by π/2,  

 

 
I2

I1

∝
sin(θ + ∆φ / 2)sin(∆φ / 2)

(θ + ∆φ / 2 + π / 2)sin(∆φ / 2)
 (5.36) 

 
sin θ + ∆φ / 2( )
cos θ + ∆φ / 2( )  

 
tan θ + ∆φ / 2( )  

 
Hence knowing θ to be constant, one can determine ∆φ for a deformation. 
 
The initial frames are first processed to improve contrast, and then the phase calculation 
is performed using 
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 φ x, y( ) = arctan
I2 x, y( )
I1 x,y( )

 

 
  

 
  (5.37) 

 
Processing is carried out using a four-quadrant arctan lookup table using sign 
information about I1 and I2 to resolve quadrant ambiguities. However the method 
requires that the phase step θ be exactly π/2, otherwise the calculated value of φ will be 
incorrect. 
 
 
5.3.5 Three position phase-stepping technique 
 
As mentioned above, a minimum of three sets of recorded intensity data are required to 
solve the PSI equation (5.8). A common 3 position technique uses phase steps of π/2, 
using relative phases of π/4, 3π/4, 5π/4. Under these conditions the following analysis 
can be applied for all points (x,y).  
 

 
I1 = I0 + I0γ cos(φ + π / 4)
I2 = I0 + I0γ cos(φ + 3π / 4)
I3 = I0 + I0 γ cos(φ + 5π / 4)

 (5.38) 

 
from which it can be shown that  
 

  φ = arctan
− I
−

I3 2

I1 I2

 

 
  

 
  (5.39) 

 
Other variations in the three position technique use a phase shift of 2π/3 between each 
image, for which the phase is calculated from 
 

 φ = arctan 3
I3 − I2

2I1 − I2 − I3

 

 
  

 
  (5.40) 

 
However this technique takes longer to perform the phase calculation as there are more 
terms. 
 
The three-position technique is subject to the same basic error sources as the four-
position technique, and analysis of the errors will be dealt with simultaneously in § 
5.3.7 for comparison. 
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5.3.6 Four position phase-stepping technique 
 
Although only 3 images are required to solve for the three variables of the PSI equation, 
in practice more than 3 images are often digitised for ease of computation, noise 
suppression and reduction in sensitivity to phase stepper errors. In the four position 
technique, the nominal phase-step is π/2, and the reference phase takes values of 0, π/2, 
π, and 3π/2. Using these values, the intensities at each point in images 1 to 4 are 
 

 

I1 = I0 + I0γ cos(φ)
I2 = I0 + I0γ cos(φ + π / 2)  = I0 − I0γ sin(φ)
I3 = I0 + I0 γ cos(φ + π)        = I0 − I0 γ cos(φ )
I4 = I0 + I0γ cos(φ + 3π / 2) = I0 + I0γ sin(φ)

 (5.41) 

 
from which  
 

 φ = arctan
I4 − I2

I1 − I3

 

 
  

 
  

 
As expected, due to the averaging over more images in the four position technique, it 
has a lower error than the three position technique, although it requires more storage 
and takes longer to process the images to extract the phase. 
 
 
5.3.7 Errors for three and four position techniques 
 
 
5.3.7.1 Error due to phase stepper error 
 
The principal error which affects most PSI technique is that of phase-stepper error. The 
techniques of PSI assume a fixed and known phase step size, which for the 3 and 4 
position techniques is π/2. However non-linearities in the movement of a PZT 
performing the phase-stepping, or a mis-calibration of phase step size can cause the 
calculated phase to be in error. A general equation for the error in the phase map due to 
the phase step error can be derived as follows. 
 
The following analysis is assumed to apply to every point (x,y) in the interferogram. 
 
Assuming an error εr in the size of the phase step, i.e. 
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  ′ Φ r = Φr + εr  (5.42) 

 

 
where Φ ′ r  is the achieved phase step, and Φ r  is the correct phase step. Using  
 
 Ir = I0 + I0 γ cos φ − Φ r( ) (5.43) 

 
as an equation for the intensity at a point for phase step angleΦ r , 
 
 ′ I r = I0 + I0 γ cos φ − Φr + ε r( )  (5.44) 

 
Substituting this into the general equation of phase stepping, 
 

 tan φ =
Ir sinΦr

r=1

R

∑

Ir cosΦ r
r=1

R

∑
 (5.45) 

gives 

 tan ′ φ =
′ I r sinΦ r

r =1

R

∑

′ I r cosΦr
r =1

R

∑
 (5.46) 

 
The error in the calculated value of φ will be 
 

 ∆φ = arctan
′ I r sin Φ r

r =1

R

∑

′ I r cosΦ r
r=1

R

∑
− arctan(tanφ ) (5.47) 

 
Assuming that εr is small, it can be shown [17] that  
 

 ∆φ = arctan
εr

r=1

R

∑ − εr cos 2Φr cos2φ
r=1

R

∑ − εr sin2Φr sin2φ
r=1

R

∑

R − εr cos2Φr sin 2φ
r =1

R

∑ + εr sin2Φr cos2φ
r =1

R

∑

 

 
 

 
 

 

 
 

 
 

 (5.48) 

 

This expression is plotted in figure 5.3 for values of R from 3 to 5. The general trend is 

that of an error in calculated phase at double the frequency of the phase, i.e. at 2Φ, 

centred at approximately εr due to the dominant term ∑  in the above expression.  εr / R
r =1

R
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Figure 5.3 - Errors in general 3, 4 and 5-position techniques for phase step error εr=π/20.  
The 3, 4 and 5 position techniques are represented by the dashed, dotted and solid lines, respectively  

 
However for a given value of R, this represents a constant offset of the calculated phase 
which can be removed from the resulting phase map as a constant term. The error at 
twice the phase frequency is visible as an apparent surface undulation in the phase map. 
One method of minimising its effect is to increase the number of fringes across the 
image, and then use smoothing or filtering to remove the high frequency noise from the 
low frequency surface undulations. 
 
However when measuring long objects, the increase in the number of fringes across the 
surface amounts to extra tilt of one of the wavefronts. This is an obliquity effect (see 
§ 4.1.2.1) and causes an error in the measured length which is dependent on the length 
being measured and on the angle of the obliquity effect. Introducing too much tilt may 
also compromise the detection of the intensity data as the size of each fringe approaches 
the detector’s pixel size. 
 
The analysis of phase-shifting errors, both linear and non-linear, have been simulated 
by Creath [3]. The results of the simulations confirm the 2Φ nature of the error, and 
show that the greater the number of steps, the lower the amplitude of the error. Thus the 
techniques of phase-stepping and phase-shifting offer similar accuracies.  
 
One technique to remove the errors introduced by incorrect phase-stepping is to use an 
additional set of interferograms to directly evaluate the size of each phase-step, using a 
FFT method [29]. This technique offers a repeatability in phase determination to λ/500 
RMS, but requires either a nominally fixed phase-step, taken 8 times (an 8-position 
technique) or a 10 step technique used with random phase-steps. This technique is also 
prone to errors with poor fringe contrast or limited detector quantisation range. 
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 Self calibration algorithms often experience problems when there are very few fringes 
across the image, as the calculations for α and φ can then contain numerators and 
denominators close to zero, leading to errors in the arctangent calculation. 

 

 
 
5.3.7.2 Error due to detector response 
 
A second source of error in the phase calculation is due to the response of the detector 
used to digitise the interferograms. For all of the techniques examined, it is assumed 
that the detector has a linear response, i.e. the digitised level of fringe intensity, Idig, is 
linearly related to the actual intensity, I. 
 
 Idig = βI  (5.49) 

 
where β is a constant. However it is conceivable that for certain detectors, this may not 
be true, and non-linearities of orders 2, 3, etc. may be present. 
 
  Idig = βI + κI2 + ρI3 +K (5.50) 

 
Stetson & Brohinski [30] have analysed various algorithms and non-linearities, and 
their results are shown in table 5.3. An asterisk indicates that the non-linearity affects 
the phase calculation, a blank indicates that the effect of the non-linearity is cancelled 
in the calculation method. The results for 2nd and 3rd order non-linearities have been 
confirmed by van Wingerden et al [31]. 
 
 

R 2nd order 3rd order 4th order 5th order 6th order 

3 *  * *  

4  *  *  

5   *  * 

 
Table 5.3 - Non-linearity effects present for R-step algorithm 

 
The effect of non-linearities on the phase calculation diminishes with the order of the 
non-linearity, i.e. the effect of a 3rd order non-linearity will be larger than that of a 4th 
order. The effects of orders greater than 3 are negligible, hence from the above table a 
minimum of 5 steps should ensure that the effects of detector non-linearities are 
removed from the phase calculation.  
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 It may be argued that one could use a larger number of phase-steps and completely 
remove the effects of detector non-linearity, and also achieve greater averaging of the 
error due to the phase-step error [29], however these techniques require much more 
storage for the digitised images, and longer processing times. The overall resolution of 
the techniques is limited by vibration, air turbulence, and surface form. PSI is used to 
measure surface displacements of the order of nanometres, and this is approaching the 
dimensions of atomic spacings, approximately 0.5 nm. As the number of phase-steps, R, 
is increased, it is difficult to stabilise the measurement system for the longer time 
necessary for the extra digitisation. Thus it is rarely useful to increase the number of 
phase steps and complicate matters, when the technique itself is fundamentally limited 
to approximately λ/500 to λ/1000. 

 

 
 
5.3.7.3 Error due to multiply-reflected beams 
 
A third possible source of error is due to multiply reflected beams in the interferometer. 
This produces fringes with a profile similar to those in Fizeau interferometers. 
Hariharan [32] examined the effect of multiply-reflected beams by expanding the 
classical fringe intensity equation for a Fizeau interferometer. 
 

 I = I0
2R(1 − cosφ )

1+ R2 − 2R cosφ
 

  
 

   (5.51) 

 

 =
2I0 R

1 + R2
1− cosφ

1 − 2Rcos φ
1 + R2

 

 
 

  

 

 
 

  
 (5.52) 

 

assuming
2R cosφ
1+ R2  is small, then  

 

 I ≈
2I0 R

1 + R2 1 − cosφ +
2Rcos φ
1 + R2 −

2R cos2 φ
1+ R2

 
 
 

 
 
 

 (5.53) 

 

 
I =

2I0 R
1 + R2 1 − R( )− 2R −1( )cos φ − R cos2φ{ }

 (5.54) 

 
Inside the brackets, the first term, (1-R), represents the background intensity, the second 
term represents the cosφ fringes, and the third term appears as extra harmonics of 
cos2φ. Note, this expression is only valid for R << 1. 
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 For a 3-step technique, Hariharan showed this to introduce a phase error proportional to 
cosφ cos2φ, to a first approximation. For R = 0.05, the maximum phase error was 6.3°. 
With a 4-step technique, Hariharan showed the error was reduced to 0.24°. Thus the 
increased number of digitised images acts as a Fourier filter, removing terms involving 
cos2φ. The Fourier response of a particular 5-step technique are detailed below in § 5.4. 
Schwider et al [17] considered the effect of extraneous coherent light at a different 
phase to the reference and test beams. They showed the error to be periodic in the 
difference between φ and the phase of the extraneous light. 

 

 
Chen & Murata [33] demonstrated a phase-stepping Fizeau interferometer, using spatial 
filtering to remove the effects of multiply-reflected beams, to approximate a sinusoid. 
Recently Bönsch & Böhme [34] have demonstrated a phase-stepping Fizeau algorithm 
which uses a four-position technique to solve for the 4 unknowns of the Fizeau fringe 
profile equation. However this technique is prone to discontinuities and errors which 
depend on the reflectivities of the surfaces and phase stepper accuracy [35]. 
 
 
5.3.7.4 Error due to quantisation noise during digitisation 
 
The intensity of the interferogram at each point is sample using a CCD camera and then 
digitised by an analogue to digital converter. The limited number of quantisation levels 
of the converter will introduce quantisation noise. The magnitude of the noise will be 
half of one digitisation level, thus the use of more levels decreases the noise. Van 
Wingerden et al [31]have derived a result for the error δφ in calculated phase due to 
quantisation noise in the digitiser for a generalised phase-stepping technique where R 
images are used at N bit quantisation with a fringe intensity modulation depth of m. 
Their result is given in equation (5.55). 
 
 
 δφ =

1 + m
3R2N +1/ 2 m

 (5.55) 

 
 
For the Primary Length Bar Interferometer which uses an 8 bit digitiser with 5 digitised 
images of between 0.9 and 1.0 modulation depth, the error in the measured phase is 
approximately 0.0015 radians (see table 5.4), equivalent to 0.00024 fringe or 0.07 nm. 
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N m = 1 m = 0.9 m = 0.5 
6 (64 levels) 0.0057 0.0060 0.0086 
8 (256 levels) 0.0014 0.0015 0.0021 
10 (1024 levels) 0.0004 0.0004 0.0005 
12 (4096 levels) 0.0001 0.0001 0.0001 

 
 
Table 5.4 - Phase measurement error (radians) due to digitisation quantisation noise for an N-bit 
digitiser with fringes of modulation depth m using a 5-step technique 

 
 
5.4 AN ERROR-COMPENSATING FIVE POSITION TECHNIQUE 
 
In table 5.3 above, it was seen that a 5-position technique is insensitive to low order 
detector non-linearities. In the appendix of their paper, Schwider et al [17] mention a 5-
position technique, using phase step values of 
 
 Φ r = 0, π / 2, π , 3π / 2, 2π  (5.56) 
 
with the phase calculated from 
 

 φ = arctan
2 I2 − I4( )

2I3 − I5 − I1

 

  
 

   (5.57) 

 
for which they estimate an error of size arctan(ε/2), where ε is the phase-step error. 
However, Hariharan et al [36] re-calculated the error to be much smaller than this, and 
the conclusion of van Wingerden et al [31] is that the 5 position technique is always 
preferable to the 4 position technique as the measurement errors are the same or better, 
and the formula takes less computation time.  
 
To analyse these findings it is necessary to derive the 5-position equation. For ease of 
derivation, assume that the phase steps have relative phases of -2α, -α, 0, α, 2α. The 
intensity at a point in the interferogram can be written as a simple function of the 
interference of two beams, with the two beam intensities A and B, and five intensity 
values I1 to I5, corresponding to the above phase shifts. 
 

 

I1 = A + B + 2 AB cos φ − 2α( )
I2 = A + B + 2 ABcos φ − α( )
I3 = A + B + 2 AB cos φ( )
I4 = A + B + 2 ABcos φ + α( )
I5 = A + B + 2 AB cos φ + 2α( )

 (5.58) 
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i.e. the reference phase Φr takes values of -2α, -α, 0, α, 2α     for r = 1 to 5 
respectively. 

 

 

Then it can be seen that the expression 
I2 − I4

2I3 − I5 − I1

 is equal to 

 

 
A + B + 2 AB cos φ − α( )− A − B − 2 AB cos φ + α( )

2A + 2B + 4 AB cos φ( )− A − B − 2 AB cos φ + 2α( )− A − B − 2 AB cos φ − 2α( )  

 
and then using the sum of angles relation for cosine, 
 

cos (x+y) = cos(x)cos(y) - sin(x)sin(y) 
 
gives 
 

 

I2 − I4

2I3 − I5 − I1

=
sin α sin φ

(1− cos2α )cosφ

= tanφ sin α
1− cos 2α

 
 

 
 

 (5.59) 

 

The phase step factor 
sinα

1 − cos2α
  

   has a value of 0.5 at α = 90° and does not depart 

from this value for small deviations in α from 90°. If α remains between 86° and 94° 
then the value of this factor does not alter by more than 0.001 and can be assumed to be 
constant, see figure 5.4. Assuming a value of 0.5 allows equation (5.59) to be 
simplified, leading to (5.57). 
 

 
Figure 5.4 - Variation of phase step factor as α is varied 
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 In fact, if we assume a phase step error of ε, then  
 
 α = π / 2 + ε  (5.60) 
 
and tan ′ φ ≈ 1+ ε2 / 2( )tan φ  (5.61) 

 

 ∆φ = φ − ′ φ =
ε 2

4
sin 2φ( ) (5.62) 

 
Thus the error in the phase calculation has the expected 2φ dependence, but its 
magnitude is one quarter of the square of the original phase-step error. As an example, 
if ε = 1°, then the maximum error ∆φ = 0.02°. For a double pass interferometer where 
each fringe corresponds to approximately 316 nm path difference, this amounts to an 
error in the surface or length measurement of 0.02 nm.  
 
This approximation can be checked by a more rigorous approach. 
 
Assuming α = π/2 + ε, then  
 

 

I1 = A + B + 2 AB cos φ − π − 2ε( )
I2 = A + B + 2 ABcos φ − π / 2 − ε( )
I3 = A + B + 2 AB cos φ( )
I4 = A + B + 2 ABcos φ + π / 2 + ε( )
I5 = A + B + 2 AB cos φ + π + ε( )

 (5.63) 

 

 

tan ′ φ =
2 cos(φ − π / 2 − ε) − cos(φ + π / 2 + ε )[ ]

2cosφ − cos(φ + π + ε ) − cos(φ − π − 2ε )

=
2 sin(φ − ε ) + sin(φ + ε)[ ]

2cos φ + cos(φ + 2ε ) + cos(φ − 2ε)

= 2sinφ cosε
cosφ + cosφ cos2ε

 (5.64) 

 

 ∴ tan ′ φ = tanφ
2cos ε

1+ cos2ε
 
 

 
  (5.65) 

 
For the above phase step error of 1°, this expressions predicts a maximum error in the 
calculated value of φ to be 0.05°, similar to the approximate result above. 



 Fringe analysis & phase stepping 159 
  

 

The expression for arctan φ (5.57) is such that it is impossible for both the numerator 
and denominator to be simultaneously zero, with sinusoidal fringes, so no accuracy is 
lost due to small angle problems. 
 
It is possible to calculate α from the intensity data, allowing a check on the 
performance of the phase-stepping of the reference mirror: 
 
 cosα =

I5 − I1

2 I4 − I2( )
 (5.66) 

 
α should have a uniform value of 90° over the measurement surface if the phase-
stepping has been performed correctly. Any tilting of the reference mirror during phase-
stepping can be identified, as can incorrect calibration of the phase-step size. 
 
Recent work by Larkin and Oreb [37] has shown this 5-position technique to be one of 
a class of ‘N+1 symmetrical’ techniques. Using Fourier analysis of the effective 
sampling algorithms, i.e. the step positions for which the intensity is digitised, they 
have shown that the frequency response of the numerator and denominator of equation 
(5.57) have certain features which make the algorithm insensitive to certain errors: 
 
• The numerator has stationary points at the fundamental fringe frequency, and at 

odd-multiples of this frequency. Thus, at these frequencies, the numerator is 
insensitive to phase-step errors (which produce a frequency slightly different to the 
fundamental frequency).  

 
• The numerator also has zeroes at all even-multiples of the fundamental frequency, 

making it insensitive to even-order detector non-linearities. 
 
• The denominator has stationary points at the fundamental frequency and all 

multiples. Thus the denominator is insensitive to phase-step errors.  
 
• The denominator also has zeroes at the even-harmonics, and hence is not affected 

by even-order detector non-linearities. 
 
Hence the overall technique is insensitive to even-order detector non-linearities and 
phase-step errors, particularly those close to the fundamental fringe frequency, i.e. 
small phase-step errors, as demonstrated above in figure 5.4. It is simple to implement 
and provides a self-check of attained phase-step values. 
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5.5 IMPLEMENTATION OF THE FIVE POSITION TECHNIQUE IN THE 
PRIMARY INTERFEROMETER 
 
Due to the advantages summarised above, the 5 position technique was chosen for use 
in the analysis of the interference patterns in the Primary Length Bar Interferometer. A 
phase-step of size π/2 is provided by moving the mirror in the reference arm of the 
interferometer by 1/4 of a fringe (at λ = 633 nm , this is equal to 79 nm). Problems of 
incorrect phase-stepping have been overcome by design of the mirror mount (see 
§ 3.2.3), and by using a commercial PZT system which uses capacitive sensing to 
maintain the PZT calibration. The PZT can be moved in steps of size 1.07 nm by setting 
the digital offset in the control electronics by computer control. 
 
The phase-stepping is performed as follows. Firstly the PZT is positioned at the centre 
of its range (digital offset = 0). The red laser is selected. After a 2 second pause, the 
image is digitised. The PZT is moved to the next position (offset = 74), and allowed to 
stabilised for 0.25 sec before the 2nd image is captured. The PZT is then moved to the 
3rd position (offset = 148) and stabilised before the image is captured. This is repeated 
until 5 images have been digitised for the red wavelength. 
 
The red laser is de-selected, the green laser selected and the PZT positioned back at the 
starting position. The process of digitising the image, moving the mirror, stabilising, 
etc. is repeated for the green wavelength and then for the orange wavelength. 
 
The size of each step is adjusted for the wavelength being used. The whole 3-
wavelength phase-stepping procedure lasts approximately 7 seconds. 
 
Equation (5.66) is used to calculate the exact phase step at each non-masked pixel, and 
the average of the values from all non-masked pixels provides a check on the 
calibration of the PZT movement and the accuracy of the phase-stepping. Any tilt of the 
mirror during stepping can be seen in the α map as a change in phase step angle. In 
practice the phase-stepping is very reliable and usually phase-step correction is 
unnecessary. Average phase step sizes are 90° ± 2°, leading to a maximum phase 
measurement error of 0.06° or 0.05 nm. 
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